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1. Summary

In 1993, a detailed uncertainty analysis of the six-component strain-gauge balance was
undertaken for the first time in wind tunnel tests at the Langley Research Center to provide
confidence and prediction intervals of the outputs as functions of the measurands instead of using
a general root-mean-square error quantity per component as a percentage of full-scale output.
The success of this effort, published in 1994 as AIAA-94-2589, has demonstrated the need for
siinilar analyses of the other wind tunnel instrumentation in use at Langley.

The present publication develops and documents a generalized set of mathematical tools
needed for thorough statistical analyses of instrument calibration and application. A compre-
hensive unified treatment directed toward wind tunnel instrument calibration was not found in
the literature.

2. Introduction

Aerospace research requires measurement of basic physical properties such as aerodynamic
forces and moments; strain; skin friction force: model attitude. including pitch. roll, and yaw
angles: translational position: temperature: pressure: mass-flow rate: and other properties.
The aerospace industry now requires that experimental aerodynamic data be furnished with
uncertainties specified at a statistical confidence level, typically 95 percent. This requirement,
in turn. imposes the need to quantify the uncertainty of each basic physical measurement at the
transducer and instrument level in the test facility as a function of the corresponding property
value at the specified confidence level.

A standard method for treatient of measuretent uncertainty in gas turbine engine perfor-
mance testing was developed by Abernethy et al. (ref. 1). Based on National Bureau of Stan-
dards handbooks. Abernethy separated elementary measurement errors into two components: .
precision error, which is a zero-mean random error due to measurement scatter. and hias error,
which is systematic and repeatable although unpredictable. The uncertainty of a final computed
parameter is determined by propagation of individual measurement uncertainties through the
functional expressions which define the parameter. usually by means of multivariable Taylor’s
series expansions. The final total uncertainty equals the root-sum-square of the propagated bias
and precision uncertainties.

Aberuethy s techniques were extended and formalized into an American National Standard
(ref.2). Coleman and Steele (ref. 3) provide a detailed academic development. of the standardized
uncertainty analysis specified in reference 2 that includes statistical concepts, experimental
design, the effects of replication, and confidence intervals. Reference 3 also provides practical
details for application of the standard to engineering practice. It introduces the concepts of
generalized uncertainty analysis for the conceptual validation of a proposed experiment and
detailed uncertainty analysis for processing experimental results of a completed experiment.
The useful concept of “fossilized bias uncertainty” resulting from the acceptance of calibration
data is mtroduced.

An international standard for wind tunnel data uncertainty analysis has been developed by an
AGARD working group (ref. 4), which provides a standardized approach for estimating precision
and bias limits, for error propagation computation, and for determining confidence intervals of
the computed results in the wind tunnel testing context. Batill (ref. 5) has applied AGARD
techniques to the data reduction problem at the National Transonic Facility.

The present publication extends the analysis of instrument calibration uncertainty presently
addressed in the uncertainty analysis literature. Specifically, correlated measnrement precision
error, calibration standard uncertainties, and correlated calibration standard bias uncertainties
are considered. The effects of mathematical modeling error on calibration bias uncertainty



are quantified. Statistical tests for detection of modeling error and calibration standard error
through the use of replication are developed. The effects of experimental design on precision
and bias uncertainties are also investigated.

Measurement uncertainties of individual measurements during calibration and experimental
testing have usually been considered to be statistically independent to facilitate computations.
The extensive use of multichannel multiplexed data acquisition systems with common amplifiers
and analog-to-digital converters introduces correlated measurement uncertainties which may he
significant. This publication allows rigorous treatment of correlated measurement uncertainties
whose covariance matrix is known.

During calibration, the uncertainties of the calibration standard are generally neglected by
assuming that their level is at least | order of magnitude less than that of the instrument being
calibrated. Often calibration standards must be used which do not satisfy this assumption. In
addition for calibration, the common use of stacked deadweight loadings for load cell. strain-
gauge balance, and sk friction balance introduces significant correlated uncertainties that
can magnify the resultant instrument calibration uncertainty several fold. Similar effects can
occur during calibration of any instrument with a similar “standard instrument™ such as a load
cell or skin friction balance. This publication develops the rigorous statistical techmques for
computation of calibration standard covariances and their inclusion in calculation of overall
instrument confidence intervals. These techniques have been applied to calibration uncertainty
analysis of the six-component strain-gauge balance as described in reference 6.

Precision errors are traditionally viewed as zero-mean random variables whose uncertainties
can be reduced without limit by replication as shown by the central limit theorem (ref. 7).
However. the presence of systematic bias errors during calibration can lead to unrealistically low
computed standard errors when very large calibration experimental designs are used. The large
number of degrees of freedom can inadvertently reduce the portion of the standard error due to
bias uncertainty if correlation effects are neglected.

Other specific work is in progress that applies this analysis to important wind tunnel
mstruments, including invariable transducers such as load cells and skin friction balances, and

multivariable transducers, including the strain-gauge balance and inertial model attitude sensors.
Other systems should be analyzed in the future.

3. Instrument Modeling and Calibration Experimental Design

Instruments are routinely calibrated by means of analytical models through the use of
multivariate regression analysis to estimate calibration parameter. To quantify statistical
confidence levels of measurements obtained by a calibrated instrument, the uncertainty of
predicted outputs must be estimated as a function of the imput value through the use of the
analy tic model.

3.1. General Multivariate Process
A formal mathematical representation of a multivanate (multiple-input )—single- output static

process, including stochastic components, is presented to describe the steady-state input-output
relationship for an instrument. The analysis does not include transient effects.

Let }Ye and R denote M. and M, dimensional Euclidean spaces, respectively, where ¥} is
the set of real numbers. Consider a real-valued multivariate function f of M, x 1 input vector
z € RV, and M, x 1 parameter vector ¢ € R . Function f maps the Cartesian product of

spaces RV and Y+ into the set of real numbers R: thus,

foRY x R = R (N

2



The notation f(c,z) denotes the output value of the function, an analytic model of a physical
process dependent upon stochastic input vector z and deterministic parameter vector c.

The observed output y of the process is generally a measured voltage whose uncertainty oy
depends upon both the uncertainty of the applied input éz and the uncertainty of the stochastic
process measurement ¢ ;. a zero-mean random variable which is independent of éz. Thus the
observed output is

;U:f(C,Z-é-(SZ)—}-(,: (2)

where stochastic input vector z has been replaced by the sum of deterministic vector z plus
stochastic iput uncertainty vector 8z. The purpose of calibration is to estimate parameter
vector ¢ based upon multiple observations of output y corresponding to a set of selected inputs
specified by an experimental design.

3.2. Single-Input- Single- Qutput Process

An example of a single-input—single-output process model in terms of a nonlinear polynomial
using inner-product notation is presented. Let & denote a known applied input to an mstrument;
let y denote the corresponding observed output, in electrical units, for example: and let ¢, denote
the measwrement error, which is assumed to be a zero-mean random variable with standard
deviation o. Often the measurement process can be accurately modeled by an A th degree
polynommal of the form

y=co+ e+t o+ cyrV 4 o (3)

which is seen to be a special case of equation (2). Arranging the polynomial coefficients into
(M4 1) x I vector ¢ gives

c=leqer... oyt (1)

Define an (M 4 1) x | input vector z, denoted the extended input vector, containing the first A
powers of x as

-l
—~—

z(x)=[laz? .. VT (

The functional notation z(x) is used in the subsequent development only when needed for clarity.
Equation (3) can then be expressed in inner-product form as

y=2Tc+er (6)

Note that although the actual process input is scalar variable 2. the process model function f
is constructed as a multivariate linear function of the (M + I)th element input vector z which
is. In turn, a nonlinear function of .

3.3. Linear, Polynomial. and Nonlinear Multivariate Processes

More general notation suitable for representation of linear, polynomial, and general nonlinear
multivariate processes is presented. Consider a nultivariate process with vector x denoting a
1 x N; vector of input variables,



-3

X = [‘l)l Ly .. J?)\'I] (

The multivariate process 1s represented by equation (6) where yis a linear function of an M7 x 1
extended mput vector z represented by

7 = [l Iy Iy ... :‘\,A]T (8)

where ) = 1. For a unwartate linear process, the elements of z, generated from input variable
o, cqusist only of [1 x]T. For a univarwate polynomial process, vector z consists of the powers of
x from degree 0 through A1 as shown in equation (5). For a multivariate linear process, vector
z consists of the mdependent variables z(x) = [I:X]T. For a multivariate polynonual process,
vector z contains the powers and cross produets of the elements of x from degree O through A .
For example, if Ny = 3, then x = [& @y w30 iff M =2, then M, = 10: and 2(x) is giveu by

(X3

2
PRSI S F SR S S F S T (9)
For a multivariate polynomial process of power M. the length of z is equal to

(N, + M)!

1"\" =
[" NI

(10)

For example, for a six-component strain-gauge balance modeled by a second-degree multivariate
polynomial where N; = 6 and M = 2, the length M, of vector z equals 28; that is, z contains
28 terms. Finally, for a general nonlinear multivariate process, z is identical 1o input vector x.

3.4. Calibration Experimental Design

The erperimental design for instrument calibration consists of a set of input values applied
by using calibrated mput standards for which the instrument outputs are observed. The
cabibration data set is used to estimate the parameters of the mathematical model. Notation for
representation of the experimental design and a figure of merit are introduced.

To estimate parameter vector ¢ during calibration, output y is observed for A values of
applied input vector z contained in a representative subset 3 of input space 3. Subset $ is
selected to cover the anticipated operating envelope of the instrument. The exp erimental design,
D C 3, is ideally chosen to minimize the variance of estimated process output y averaged over
J, with parameter vector ¢ obtained by least-squares estimation. Box and Draper (ref. 8) define
a design figure of merit J as the average predicted output variance over set 3, normalized by
the number of calibration points A and measurement variance o to remove the effects due to
the number of points in design D, and measurement noise. Thus,

K [ o%z)d
J:_‘_l:.‘_’ﬂ)__x (11)

o f, dx

where (Ti(z) is the predicted output variance function defined later.

4




After determination of subset D C 3. construct K x M, design matrir Z from the elements
x, € D, where the kth row of Z equals the kth extended mput vector z(x,) for A = 1... A as

follows:
|
(12)

7{ Xy )T

Arrange the corresponding observed output values and measurement errors into observation
vector y and measurement error vector eg, respectively, each having dimension of A x 1 as

y=1lwuw - ul" (13)
and

€ = [( E (];,_) - (]“‘)‘ }T ( lll)

where measurement. error vector eg has zero mean and A x A covariance matrix Xg. For linear
and polynomial models, equation (6) is extended to a matrix form for K ohservations with the
help of equations (4) and (12) through (14) as

]
~—

y =Zc + €, (1

4. Generalized Linear Multivariate Regression Analysis

Multivariate linear regression techniques are developed (ref. 9) for least-squares estimation of
coefficient vector ¢ in equation (15), denoted by ¢, where the measurement errors are correlated.
Techniques are also provided for determination of confidence intervals for € and for confidence
and prediction intervals for new measurements based on the calibrated value of ¢. Measurement
error covariance matrix g is assumed to be symmetric, positive definite, and expressible in the
formn

g =o;U (16)

where A x A matrix U is a known symmetric positive definite matrix and ¢? is a scalar
to be estimated. If the A calibration observations are uncorrelated, then covariance matrix
S is diagonal. Otherwise a linear transformation must be applied to output vector y
to diagonalize 3g, which decorrelates the observations. If measurement error vector eg Is
normally distributed, the decorrelated observations are independent, a necessary condition for
computation of confidence intervals using chi-square and ¢-distributions (ref. 7). Detailed proofs

of the following results are given in the appendix.

)



4.1. Decorrelation of Covariance Matrix

A coordinate transformation is applied to observation y which diagonalizes measurement
covariance matrix Xg. Because matrix U is symmetric and positive definite, a nonsingular
matrix P exists such that U can be decomposed into the matrix product as follows:

U = PPT (17)
Define transformed observation vector v as

v=Py (18)

Fquation (15) can now be transformed through a change of coordinates into the following:

v=P"Ze+e, (19)

where €v = P leg. The covariance matrix of v is given by

S, =P P T =¢l1 (20)

where P~T = (P™H)T: thereby, the elements of v are confirmed as uncorrelated (ref. 9).
4.2. Least-Squares Estimnation of Process Parameters

The least-squares estimate of coefficient vector ¢, denoted by ¢, is obtained by mininizing
the following wmner product with respect to ¢:

Sep = (v~-P '"Zc)N (v — P Zc)
=(y—-2¢)"U(y — Zc) (21)

Note that Sy, equals the residual sum of squares of the multivariate regression on vector v and
that the regression is equivalent to least-squares estimation of ¢ on vector y, weighted by the
mverse of measurement uncertainty covariance matrix Xg. Define M, x A, weighted moment
mairix Q as

Q=2z"U"'z (22)
The least-squares estimated coefficient vector ¢ is obtained as
c=Q'Z™U 'y (23)

The expected value of ¢ equals ¢ and its covariance matrix is given by

2, =olQ" (24)

6



Define i x 1 predicted output vector v = P~'Z¢, and define A x 1 residual vector e, by

o~

¢, =v - v =Wge, (25)

where A x I matrix Wy Is defined as

Wi = I — Q (26)

Iy is the A x R identity matrix, and 2k is defined as

Qx =P (P (27)

Note that £ is synunetric. Residual vector @, has zero expected value and covariance matrix

2, =0, Wg (28)

The residual sum of squares Sqp. obtained by minimization of equation (21), s defined as

Ssr = eroy = €] Wkey (29)

The standard error of the regression, defined as

S'F: —_— (-}U)

has expected value E[SF] = op and is thus an unbiased estimate of op.

5. Confidence and Prediction Intervals

The confidence interval for a statistical variate, such as the estinated parameter vector or
the predicted process output, is a closed interval within which the variate is computed to lie at
a specified probability or confidence level. See references 7 and 10 for detailed definitions.

5.1. Confidence Intervals of Estiinated Parameters

If error vector e, is normally distributed, then Sq;/o# is chi-square distributed with K — A,
degrees of freedoni. It follows that a confidence ellipsoid for estimated coefficient vector ¢ at
confidence level I — a is given by the following inequality:

(c = 0)"Q(c =€) < M,SEFy, ;i _y,(0) (30)

where Fj(a) is the a level of the F-distribution with 7,j degrees of freedom (ref. 7). The

length and direction of the semiaxes of the ellipsoid are detenmined from the eigenvalues and
eigenvectors, respectively, of matrix Q.



5.2. Calibration Confidence Intervals of Predicted Process Qutput

The calibration confidence mierval is the closed mterval within which a predicted process
output is conmiputed to lie based on the calibration uncertainty. Let y(z) denote the predicted
scalar output for arbitrary input vector z based on estitmated parameter vector ¢: that is

y(z)=2z"¢ (32)

The expected value of §{z) equals 2T¢ and its variance is given by the following quadratic form:

o) = ot 2TQ 'z (33)
Equation (33) equals the variance of the calibration based on estimated parameter vector c.
Matrix Q, dependent only upon the experimental design Z and covariance matrix .. Is fixed
aflter calibration. Hence, the calibration uncertamty becomes a fixed deferministic function of
applied mput vector z. If €, 1s normally distributed, a confidence interval at level o for predicted
value y(z) is specified by the following inequality :

b=l (2T Q ) St (5) (34)

where {(e) is the a-percentile value of the two-tailed t-distribution with & degrees of freedom
(ref. 9).
5.3. Prediction Interval of New Measure ment

The prediction interval is the closed interval within which the predicted process output
is computed to lie due to both calibration uncertainty and the uncertainty of a single new
measureinent. After calibration, let y, denote a new observation of the response of the instrument
to input zg, with uncertainty ¢y and standard deviation oy that is independent of calibration
measurement error vector €,. The observed value y, 18 given by

T .
Yo =2, C+ € (39)

The predicted value of the new observed y, obtained from equation (32), that is, the calibration
curve, is given by

W=z (36)

The prediction error 8y, defined as the difference between the observed and the predicted
obscrvations, is given by

5@05;!/11—370:2}((3—6)-}-(0 (37)
and has zero mean and variance
2 2 2 Tey-! .
U.UU(ZU) =0, +0rz,Q 'z (38)
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The prediction interval at confidence level a is specified for y, as follows:

2 1/
~ a _ - &\ .
o= | < (U— +27Q 4> Setiow (5) (39)
F

This inequality represents the uncertainty of a single measurement after calibration. Note that
prediction error 63, is composed of two compounents: the uncertainty of the new measurement
whose variance is ¢2 and the calibration uncertainty whose variance, given by equation (33),1s a
deterministic function of applied input z,. The uncertainty of the new measurement is a precision
error which can be reduced by replicated measurements, whereas the calibration uncertainty is
a fossilized bias error (ref. 3) dependent upon xy that, after calibration. does not decrease with

replication.

6. Computation of Inferred Input With Confidence and Prediction Intervals

During instrument application an unknown input x, is applied. and output g is observed.
The desire is to infer input x, from observation y, by inverting the calibration equation (eq. (36
0 Yo DY i
rewritten as

R L v y

Yo = 2z (1y)c (410)
Solve equation (40) for x and denote the solution by Zy, the estimated inferred input. Whenever
z(2) is nonlinear, solution of equation (40) may require an iterative computational technique.

Calibration confidence intervals and prediction intervals of inferred input z, are obtained by
dividing equations (34) and (39) by y.(2) and y(Za), respectively, where

g3y =2 % (41)

Then the calibration confidence interval of the inferred input, obtained from equation (34), is
given by

[2"(2)Q'2(#)] " Sk tin, (@/2)
y:(x)

|z — 2] < (42)

Similarly, the prediction interval of the inferred input, obtained from equation (39).is given by

" - ~ ~ 0 lR .
[c2/a? + 2f (2)Q 2, (2y)] : Sg ity _a, (0]2)
yJ-(',fll)

o — x| < (43)

7. Calibration Uncertainty Caused by Combined Input Errors and
Measurement Errors

In general, overall calibration uncertainty arises from input calibration standard uncertainties
as well as from output measurement uncertainty. The previously developed analyses are extended
to accommodate uncertainty in applied input x as well as measurement uncertainty €. C'onsider
the combined effects during calibration of the uncertainty of the kth applied input vector x,
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denoted by €., and the corresponding measurement uncertainty €z.. The uncertainty of the
kth extended imput vector z;, denoted by M, x | vector &z, 1s obtained as

6z, = 7(X; + €x4) — z(X ) (44)
Vector éz; has zero expected value and A, x M, covariance matrix ¥, : the uncertainties of
the elements of z, may be correlated. In addition, every pair of input vectors z, and z; may
be correlated with covariance matrix X, . Design matrix Z, defined in equation (12), then has
N x M, uncertainty matrix 67 (()11\(1‘11(1(—‘(] as follows:

~ -

oz

87y
0Z

——
R

o

~——

<. T
bz,\J

which has expected value 0. where 0 18 a A x M, matrix of zeros. Each clement of input
uncertainty matrix 62 is assumed to be independent of measurement error vector eg defined n
equation (14).

The olserved output vector y corresponding to the actual input matrix Z + 6Z is given by

= (Z+8Z)c + €g (46)

annd the combined output error vector, denoted by by, 1s given by

by =y —Zc=6Zc+ €q, (47)

which has expected value 0. The A x A covariance matrix of combined output error vector 8y,
denoted by X, is computed element-by-element with the following equation (eq. (48)) for i =1
to A and j = 7 to A. Because 8Z and eg are independent, the covariance between elements
dy; and dy; of &y s obtained as

cov (by;.6y;) =& [CTE:,-(S:jc] + Eleie]

I

"%, ctoy (48)

where o;; 1s the 7jth element of measurement uncertainty covariance matrix Xg.

Rewrite equation (47) to express observed output vector y i the form of equation (15) as

y = Zc + by (49)
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where y has expected value Ze. Least-squares estimation of coefficient vector ¢ proceeds as
before, after replacing vector €, by éy and matrix I, by Zy, respectively, in equations (16)
through (39). An analysis of variance for replicated calibrations of a multi-input-single-output
sensor presented in the subsequent development provides a test of significance for the presence
of calibration bias error due to loading uncertainty.

8. Effects of Process Modeling Error

Models of instrument steady-state imput-output relationships are typically approximnate
empirical relationships such as multivariate polynomials. The effects of modeling error and
experimental design on calibration uncertainty are quantified, based on generalized multivariate
linear regression analysis. Calibration standard uncertainty is neglected.

8.1. Uncertainty Analysis of Modeling Exror

Let process f(c.z) be modeled as a linear function of an extended input vector z according
to f(e,z) = zc. whereas the actual functional relationship is given by

w(z) = fle.z) = zc +7(z) (50)

where 7(z) represents the modeling error. However, the system is calibrated by using experi-
mental design matrix Z based on the linear model of equation (G). During calibration the ith
observation is given by

p —_— . - s
Yp = 2pC + (2, ) + €x, (1)
which is extended over A observations into matrix form as

Yy=2Zc+~(Z)+ex (52)

where 4(Z) is the K x 1 vector of modeling errors. Cloefficient vector ¢ is estimated by means
of equation (23); the expected value of ¢, biased by the modeling error, is given by

£@) = c+Q'ZTU 'v(Z) (53)

Predicted calibration output vector y is obtained by using equation (32). Then the expected
value of ¥ is given by

E(y) =Zc+ZQ 'Z2TU ' v(Z) (54)

where the second term represents the predicted output bias error due to modeling error. Residual
vector €, defined 1n equation (25), is found to be

&y = Wy[P'¥(Z) + €] (5

11



and from this the expected value of e, is

£e)] = WP '~(2) (56)

The covariance matrix of €, is given by
2 el
2,3 =0, Wg (h7)

The expected value of weighted error sum of squares S given in equation (29) equals the
following:

E[Ssr] = (K — Mz)ok +vN(Z)P "Wk P ' ~(Z) (H8)

It is seen that Se, given in equation (30), becomes a biased estimate of ¢ whenever modeling
error 4(Z) 15 nonzero.

The variance function (ref. 8) of predicted output y is computed by using the above results
as 15 now shown. For arbitrary vector z, the predicted output is given by equation (32).
The corresponding actual output function value y without measurement uncertainty, shown
i equation (H0). 18 given by

y(z) = zc +1(2) (59)

The corresponding predicted output error 8y is then

by(z) =y(z)— y(z)
=5(z) —2Q ' 2" U [v(Z) + €g) (60)

To find the variance function of y, take the expected value of the square of equation (60) and
after some algebraic manipulation, the following result is obtained:

oy(z) = 072" Q 'z + [1(2) — 2Q7'ZTU Y (Z))* (61)

The first right-hand term of equation (61), identical to the predicted output variance function
of the model previously given in equation (33), represents the portion of the bias uncertainty of
the predicted output due to calibration measurement uncertainty. The second right-hand term
of equation (Gl) represents the portion of the bias uncertainty of the predicted output due to
modeling error.

8.2. Design Figure of Merit

Design figure of merit J defined in equation (11) is obtained by integrating equation (61) over
mput subspace 3. It allows examination of the effects of the experimental design on predicted
output error due to precision uncertainty and bias uncertainty. As in reference 8, figure of merit
J is separated into variance error term V' and bias error term B:

12



J=V+B {62)

The precision uncertainty portion of J obtained from the first right-hand term of equation (61)
equals

V= %/ 27 Q 'z dx (63)

Similarly. the bias uncertainty portion of J obtained from the second right-hand term of
equation (61) equals

B =

T

]’\Q / [7(2) — 2Q ' ZTy(Z)] dx (64)
FRe g4

where € is the volume integral of subspace 3 given by

Q= /(lx (65)

8.3. Effects of Experimental Design on Figure of Merit

The effects of the experimental design on calibration uncertainty due to measurcment
uncertainty and on calibration error due to modeling error are quantified by means of figure of
merit J. Simultaneous minimization of ¥~ and B imposes conflicting requirements on selection
of experimental design D. Fquation (63) indicates that precision uncertainty V" tends to decrease
as the vector length magnification of matrix Q increases. The vector length magnification of
Q tends to increase as the distance of the design points from the origin increases, generally to
the boundary of volumme 3. On the other hand. reference 8 demonstrates that bias uncertainty
B tends to be minitized by uniform placement of test points throughout space 3. Hence, the
accepted practice of uniformly spacing test points from zero input, to full scale input, and back
to zero can reduce calibration uncertainty caused by improperly modeled phenomena such as
nonlinearity and hysteresis.

A number of well-known methods exist for detection of modeling errors. Examination of
residual error plots often discloses the presence of systematic errors in addition to random
measurement errors (refs. 7 and 10). Residual normal probability plots (ref. 10) indicate the
presence of nonnormally distributed errors which are likely to be systematic. The process of
detecting modeling error may indicate the functional extension required for model improvement.
On the other hand, polynomial models should be limited to the minimum order needed to avoid
fitting data to random noise (ref. 10).

9. Uncertainty Analysis of Nonlinear Instrument Calibration

The previously developed generalized linear regression analysis of instrument calibration,
with calibration standard uncertainty, is extended to include general multivariable-input-single-
output nonlinear processes.

9.1. Combined Input and Measurement Uncertainties

Consider a process modeled by nonlinear function y = f(c.z) defined in equation (2). Qutput
uncertainty éy can be approximated as the sum of the differential of f(e,z) with respect to z
and measurement uncertainty ¢p as follows:
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df(c.z)

PP ]6z—+—(p (66)

by= fle.z+bz)— flc.z)+ ep = [

During calibration, A observations are acquired in accordance with A" x M, design matrix Z
defined m equation (12). The uncertainty éy; of the kth observation yi is given by

- H oy oy,
dyp = [—%ﬂ] bzy + e, =f,(c.z)éz +¢p, (67)

where 1 x N gradient vector f,(c.z,) = [0f(c,2,)/0z]. Note that éy, is normally distributed if
both ¢z, and ¢; are normally distributed. The actual value of the kth observation is given by

u = fle.zy) + by, (68)
Let £(¢.Z) denote the A" x | vector function which is obtained by evaluating function f(e¢, z) for
cach of the K rows of Z. Also. let y and 8y denote the corresponding A x 1 vectors of observed

outputs and output uncertainties obtained by evaluating equations (67) and (68) fork = 1 to K,
respectively. Then y is given by

y =f(c,Z)+ by (69)

The N x N covariance matrix of 8y, denoted by Xy, is obtained element by element with
equation (67) as follows:

By, =f(c.2)X, £(c.z;) + 0 (70)

iy

where X, is the covariance matrix of the 7th and jth input vectors z; and z ;, 0;; is the covariance
of the 7th and jth voltage measurements, and ¢ and j range from 1 to K. If vy is symmetric
and positive definite, then it can be expressed in the form of equation (16) as

Ty = olU (71)

where A’ x A" matrix U is known and can be decomposed into the product U = PPT as shown in
equation (17). Output vector y is transformed into vector v by equation (18), that is, v =P~ 'y.
Equation (69) then becomes

v=P'f(c,Z)+bv (72)
where v = P7'éy. The expected value of v is
Ev] = P 'f(c. Z) (73)

The covariance matrix of dv is given by
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T, = ol (74)
Therefore the elements of év are uncorrelated and év is normally distributed whenever 8y is
normally distributed.

9.2. Least-Squares Estimation of Process Parameters

The least-squares estimate of parameter vector ¢, denoted by ¢, is obtained by minimizing
the error sum of squares S, given by the following quadratic form. with respect to c:

Sio =[v—P (. Z)"[v-P 'f(c,D)] =y —f(c.Z)"U ' [y — f(c,Z)] (

=1
gl
~—

To minimize Sy, compute the gradient of equation (75) with respect to ¢ and set the resulting
set. of M, equations equal 1o zero and expressed in vector form as

L%
h=-22¢ — [y P'f(¢.Z))"P'F. = 0 (76)
2 dc

where h is a function of independent arguments v. ¢, and Z: the dimension of hiis 1 x M, and
1 . - . . .
of vector [v =P f(c¢,Z)]is A x l:and A x M. matrix F. is defined as

(e, Z)
e

—
-1
-1

~—

F.c.Z) =

Equation (76) can be solved for € by means of a Newton-Raphson iteration or a similar method.
provided that the symmetric M. x M, Jacobian matrix of Sy, with respect to ¢. denoted by R,
is nonsingular in some region about ¢ and Z; that is

9’55 Oh

R = 902 ——E— (78)

9.3. Uncertainty of Estimated Process Parameters

The uncertainty 8¢ of stochastic vector € is obtained in terms of combined output uncertainty
év from the differential of equation (76) as follows:

oh1T . -
. v+ Réc=0 (79)

where K x M, matrix [0h/dv] equals

[311

a_v] =PTF, (80)

Matrix R is shown in the appendix to be

dh S
R=|—|=F. U F.+He (81)
dc
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where the zjth element of M, x M, matrix Hy is given by

he, =[v—P 'f(c.Z)]"P L., (82)
where K x | vector f,; is the 7jth columin of M, x M, x K array F,. defined by

_OFX(c,Z) _ 0*f(c, Z)

F(*r :
de ac?

(83)

and 1 < 4, j < M. It is scen that the A x | vector expression [v — P~(¢,Z)] contained in
equation (82) equals the vector of residuals denoted by €,. Then if the norm of €, is sufficiently
stmiall, matrix Hg can be neglected in equation (81) to yield the following approximation:

R~F'U'F, (84)

From equations (77) to (80). the uncertainty of estimated parameter vector ¢ equals
- I
bc = —|— —| év=—-R'FIP Tov (85)
de v

From equation (85), calibration parameter uncertainty é¢ has zero mean, it is normally
distributed whenever oy is normally distributed, and its covariance matrix is given by

T =07Q;" (86)
where
Q. = [R'FIUF.R']” (87)

If approximation (84) holds and if the rank of A x M. matrix F, equals M., then matrix R is
nonsingular and matrix Q. is approximated by

Q.~R (88)

9.4. Residual Sum of Squares and Standard Error of Regression

Let v denote the predicted calibration output vector corresponding to design matrix Z and
estimated parameter vector ¢, where

v=P'f(¢c,2) (89)



which is represented in differential form as

&, =P 'F.(¢.Z)6¢ + 6v = (Ix — 2p)bv (91)
where A" x I matrix £2p is
Q= (P'FH)R"(P'F )T (92)

The expected value of @, equals zero, and the covariance matrix is given by

'

An unbiased estimate of ¢ is now obtained. The residual sum of squares is defined as

eTo, = 6vT(Ik — QF)dv (94)

v

Ssr

As shown in the appendix, Syg/al is chi-square distributed with A — M. degrees of freedom.
and the expected value of Sg; 1s

E(Sep) = (KN — M)oi (99)

Therefore an unbiased estimate of oy is given by standard error Sy, which is defined as

5 = (2 )w (96)
YT AN - AL '

A confidence interval for oy at confidence level « is given by

K — MRS, KN — M )V2S,
(K MRS (8 = M5, (o7)
\(140)/2 X(1-n)/2

where \, is the a-percentile value of the chi-square distribution with A — M, degrees of freedom.
9.5. Confidence and Prediction Intervals of Predicted Output

The confidence ellipsoid for estimated calibration parameter vector ¢ is defined by the
following inequality:

(¢ —&)"Qclc —¢) € MoSY Fu, - (@) (98)

where Fy; x_a.(a) is the a-percentile value of the F-distribution with M. K — M, degrees of
freedom.

After calibration, consider z, as an arbitrary deterministic input. The corresponding
predicted value gy = f(c.z,) is computed by using calibration parameter vector ¢. The
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uncertainty &y of y due to calibration uncertamty alone is obtained from the differential of
equation (2) as

8% = Yo — = flc. zy) — f(C.z,)
=1£7(¢,2,)6c = £ (¢.2,)R™'F{P bv (99)

where M. x | gradient vector f.(c¢.z) is defined as

f.(c.z) = %—7—) (100)

The variance of predicted value y(z,), termed the output variance function (ref. 8), is given by
the following quadratic form:

(r;‘:(z(,) = U\, [f:',r(f:,z”)Qa‘fr(az”)] e {(101)

From equation (67) we can see that if uncertainty év is normally distributed. éy,/c, is normally

o

distributed with zero mean and unit variance. Sinee 52 /o is chi-square distributed with A — M,
degrees of freedom. a confidence interval at level o is given for y as

B — S(.2)] < [E7(€. 2,)Q0 (€ . 2,)] 1,5y (102)

where 1, is the tail of Student's ¢t-distribution at confidence level o with A — M. degrees of
freedom. Inequality (102) defines the calibration confidence interval.

Let a single new measurement y; be made after calibration by using an instrument for which
the variance of a single measurement equals 0. With the use of equation (101), the variance of
the single new measurement is

2 Do 2 P 9 0_2 .
7 (20) = oy p(20) + 0y = f’f-[/{,‘,(%) + ;L] (103)
v

L0
where quadratic form p° is defined as follows:
| £,

pf/(z“) = f':r(a’zu)Qalfﬂ(e‘zu) (104)

The confidence interval at level a of new measurement yo is given by

R i 02 1/2 )
Yo — f(c.z()] < [P;(Zu) + a_;)] £S5y (105)
2

which is termed the prediciion interval

An analysis of variance for N replicated calibrations of a nonlinear multi-input-single-output
sensor is obtained in the appendix which provides a test of significance for the presence of
calibration bias error due to loading uncertainty. In addition, equations are provided for
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computation of matrix R, given by equation (81), in terms of the K’ x K covariance matrices of
a single replication.

10. Multivariate Multiple-Output Analysis

The preceding analysis is now extended to a multi-input multi-ontput instrument such as a
six-component strain-gauge balance. Although the notation becomes cumbersome, the extended
computational procedure simply iterates the previous multi-input-single-output technique for
each process output elenent.

Consider an L-valued process g represented by a 1 x L row vector of scalar functions of an
M.x1 parameter vector ¢.; and z, cach of the formi of mapping equation (1). Let g;j{c.;.z) denote
the jth function, where j ranges from | to L, where g; is dependent upon the corresponding
M, x | parameter vector ¢.; and 1 x M, input vector z which is common over all values of j.
Arrange the coefficient vectors L into M. x L coefficient matrix C as

C=c, '('.-_): ey (106)

As usual, A observations are made during calibration in accordance with design matrix Z. For
the kth observation let g, y.. and €. denote 1 x L vectors of finctions ¢;, observed outputs,
and measurement errors, respectively. where

g(C.z,) = [g(c.zs) galer ze) ... gilc., 2] (107)
Yi. = [!/A- P Ye2 - LUU‘] (108)
€vpe = [Erl'.l € b2 - EIA'./.] (109)

respectively, where €y;. has zero mean and z; denotes the corresponding 1 x M, input vector
defined in equation (12) as the kth row of design matrix Z. Then the functional relationship for
the kth observation is obtained by extension of equation (2) to L space as follows:

Vi = 8(C,2,+6%;) + €y
=g(C,z,)+ by:. (110)

where uncertainty 8y;. 1s given by

by.. = g(C,z,+62)— g(C, 2z, )+ €y

og(C, z,
= 627 [—%} + ot (111)
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Note that matrix {dg(C,z.)/3z] has dimension M, x L. Vector equation (110} is then extended
to a N x L matrix equation as shown by the following equations:

Y =G(C,Z+6Z) + Ey

=G(C.Z2)+ 6Y (112)
g(C. %)
g(C. z,)
G(C.Z) = (113)
g(C.z,)
Yi.
Y-
Y = ' (114)
Ynr
€y
€y
E, = . = [€yur. €y, €yer] (115)
€vie
Note that A" X | vectors €,.;, ..., €,.; denote columns |, ..., I of matrix E,. Also A" x L matrix

¢Y is obtained by extension of equation (111) as

(Sy).

8y ..
8Y = . +E, (116)

by .

Let Xy, ,, denote the A x A" covariance matrix of error vector €y.,,, and Xv,,,, denote the A" x i’
covariance matrix of columm m of matrix Y, which is computed element by element by using
equation (48) with mn ranging from 1 to L and f replaced by g,,. Furthermore, define S, as in
equation (75) with f replaced by g, for each of the L elements of g. The least-squares estimated
coefficient matrix, denoted by C, is computed column by column by solving equation (76) to
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minimize Sy, for m = 1, ..., L, with ¢.,, the mth column of C. The covariance matrix and
confidence ellipsoid for €.,, are computed as before with equations (86) and (98), respectively.

After calibration, the predicted output matrix y for arbitrary input z using estimated
coefficient matrix C is given by ¥y = g(C, z). The uncertainty 8y due to calibration uncertainty
alone equals

by = g(C.z)— g(C,2) (117)

The calibration confidence interval for éy is obtained element by element by equation (102).
Similarly, the prediction interval of a new measurement is obtained element by element by
equation (105). This analysis is illustrated by an example of a two-input -two-output linear
process given in the subsequent development.

11. Uncertainties of Inferred Inputs From Inverse Process Function

An instrument is normally employed to infer the value of an input x based on the corre-
sponding observed output y by means of the process model f(c,z) for the single output case, or
g(C.z) for the L-dimensional casc. following calibration. Calibration confidence intervals and
prediction intervals of the estimated process input are obtained.

Let g denote both cases in the following discussion. Input z can be computed if iverse
function g=' exists. A necessary and sufficient condition for the existence of g=' is that function
g be byective, that is, a one-to-one onto mapping from RV« to R If M, = L. g is continuous
and differentiable and if for observed output vector y,. an input vector z, exists such that
yo = g(C.z,). then a necessary condition (ref. 11) for the existence of the inverse function g=!
is that L x L matrix dg/dz be nonsingular in a region about z;. Indeed. the inverse function
may be obtained by solving the following system of ordinary differential equations obtained from
equation (111):

(118)

. -1
dz" = dy [M]

oz

Whenever a closed-form inverse function is unavailable, given observed output y,. the corre-
sponding predicted input value 7, is computed iteratively from the relation y, = g(C.%,) by
means of Newton-Raphson iteration or a similar method.

If input 2, were known, the uncertainty &y of the corresponding predicted output would be
given by equation (117). However, since predicted input z, is inferred from known output y,,

the uncertainty &y, is obtained from equation (118) as
o [08(C.2)]7
57T = 63, [—g(——fﬁ} (119)

Oz

where §g/0z nust be nonsingular and 8y, is estimated by equation (117) with z, replaced by
7,. Confidence and prediction intervals for z, are then obtained from those computed for ¥,
with equations (102) and (105) followed by transformation (eq. (119)).

12. Replicated Calibration

A statistical technique for detection and estimation of bias errors due to either modeling
error or calibration standard error is now developed, which requires nultiple replications of
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the calibration experiment. The use of replicated calibrations over an extended time period is
important for the following reasons:

1. To obtain adequate statistical sampling over time
2. To test for nonstationarity and drift

3. To test for bias uncertainty

4. To estimate bias and precision uncertainties

The variance of averaged random errors is known to decrease as 1/N over N replications,
whereas that of bias errors, which are repeatable, does not decrease with replication. Tests for
the existence of significant bias uncertainty by analysis of variance are based on this fact. The
bias test, derived for a general multivariate nonlinear process in the appendix, computes the
suin of squares Syyv of the set of A residuals averaged over N replications. The mean value of
Sqv is an estimate of the variance due to bias uncertainty. The mean value, denoted by 5y, of
the difference Sy between the sum of squares Sp of the global set of N A residuals and Sgv 18
an estimate of the variance due to measurement error. The variance ratio NSy /Sy, provides a
test of significance for the presence of bias errors. A sumilar analysis allows detection of drift of
any estimated parameter during replication. Details are given in the appendix.

12.1. Computation of Replicated Design Matrix

A replication matrix is defined which provides convenient computational notation for repli-
cated calibration experimental designs. Consider a single-output sensor modeled by an (M, —1)th
degree polynomial. The sensor is typically calibrated by using A standard loadings applied n
a predefined order, say zero to full scale and back in (K — 1) equal increments, represented by
K x M, experimental design matrix Zg. The calibration is replicated N times, described by
Ni x M, design matrix Znk, where

Ing = | | =H"Zg (120)

Zg

and where K x N A replication matrix H equals

12.2. Replicated Moment Matrix for Linear Single-Output Process

Moment matrix Q is computed for a replicated experimental design for calibration of a
linear single-output instrument with uncorrelated measurement uncertainties. Use of replication
matrix H permits computation of Q in terms of the single-replication K x M, experimental
design matrix Zg. Assume that the calibration standard uncertainties are fixed unknown bias
errors modeled as a zero-mean normally distributed random variable and that design matrix Zg
has A x A covariance matrix ¢°Ix. Because complete design Zyg contains N replications of
design Zg. the N subsets of i loadings are correlated with the N K x NA covariance matrix

¥, of design Znk given by
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I Ix ... Ik
I, Ix ... Ik
, =0 H™H = o* (122)
Iy Ix ... Ik
Assume also that sensor output measurenments are uncorrelated with covariance matrix
Ix Ok ... Ok
OK IK . 0}(
Yg =0} = o7Ink (123)
Then combined input covariance
Ey = (Tf,UNK
where
(o + DIk I |
IK ((i + l)IK IK
Unk = Ink+0oHTH = (124) -
Iy Ik (o + DIk
and
a;
o= — {(125)
Tk
It is readily shown that
(1—13)/81k —Iyx Iy
—Ik (1-1)/81Ix —Ik
(126)

Uik =Ink —SH™H =3

Ik Ik
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where

§= — (127)
1‘\"(! + 1

As shown in the appendix, the M, x M, generalized moment matrix Qg = Z§KU]§‘KZNK 18
given by

2
Ty

S —— A 28
@ITN )7 of Lxlx (128

Qnk =

The portion of the calibration uncertainty due to calibration standard uncertainty, repre-
seted by 0% in the denominator of equation (128). does not decrease with replication. On the
other hand. the portion of the calibration uncertainty due to measurement uncertainty, repre-
sented by 7. in the denominator of equation (128), decreases as N~ % with replication. Note that
equation (128) permits more efficient computation of uncertainties for an NK x M, replicated
experimental design in terms of nonreplicated N x A, design matrix Zg because computational
storage requirenents are reduced by a factor of N,

12.3. Replicated Moment Matrix for General Single-Qutput Process

The technique developed in the previous section for computation of moment matrix Q for a
replicated experimental design is extended to a general nonlinear single-output. instrument with
correlated measurement uncertainties.  Consider a general multi-input -single-output process
calibrated by using experimental design Zg replicated N times. The A x | output uncertainty
vector of a single replication, denoted by éyg. 1s given by expanding equation (67) for
E=1..... K. Then for N replications, N A" x 1 output uncertainty vector dynk is given hy

dynk = HT6f, + e (129)

where A x | gradient vector éf,, defined in the appendix. has A x A covariance matrix
Y = Up, and NA x 1 measurement uncertainty vector eg has N K x N A covariance
matrix g = 07 Ugy,. all defined in the appendix. The measurement uncertainty is assuimed
uncorrelated between replications and the A x KA measurement covariance matrix of each
replication s assumed to be Xg, = 0z Ug, . From equation (129),

Tvag = BF + Bk = 02Uy + 2 U = 05 Uy, (130)
where N x NA covariance matrix Xg,  is given by
EfZNK = UﬁUfZNK = UjHTUfZKH (131)
From equation (131), Uy, can be written as
UYNK = UENK + “Ufzm( (132)

where a 1s defined in equation (125).
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As shown in the appendix, the inverse of NA x NK matrix Uy, can be expressed in ferms
of K x A matrices Ug, . and Ug, . Define A" x A" matrix B as

B = [Us, + (N — DaUg,] ™ Ugy (133)

and A x A matrix A as

A = (Ug, +aUg, [Ix— (N - DHB]) ™ (134)
If the inverse matrices contained in equations (133) and (134) exist, then AL, x M, moment
matrix Qng = ZXx Uy, Znk. defined in terms of VA x M, matrix Zng. and N x NA

matrix Uyy,. can be computed in terms of A x M, matrix Zk and A x K matrces Ix. B. and
A as

Qnk = NZg[Ix — (N — 1)BJAZg (135)

12.4. Analysis of Variance for Estimation of Bias and Precision Uncertainties

A test of significance for bias uncertainty due to calibration standard error or modeling
error and an estimate of the corresponding standard error are obtained by analysis of variance
technigues. as shown in detail in the appendix. Assume as null hy pothesis that the calibration
bias error is zero; then matrix Ung equals Ing 1n equation (124). By using equation (27).
NK x NN matrix Qng beconies

i
Ok = ZakQukZak = \—,HTSZKH (136)
where the A x A matrix £k 1s defined as

Qg = Zg(ZrZk)'Zg (137)

The N K x | residual vector é has zero expected value and N K x N R covariance matrix o*W k.
given in equation (26) as

WNK = INK - SINK ( 138)
As shown in the appendix, the residual vector € can be expressed as

’é: WNKEE (139)

where N x 1 error vector e is normally distributed with covariance matrix ¢’Ing. Let €,
denote the A x 1 residual vector at the nth replication, which has zero expected value and

. . P . . . oo
covariance matrix o- Wk, given in equation (26) as

Wk = Ik — Qx (140)

25



Thus, € is partitioned into N, (A" x 1) subvectors
~) ~T ~T - T
e :[e‘ e, ... e\.] (141)

Let @k denote the mean value of residual vector €, averaged over N replications; that is,

_ I N .
e = '\—,Ze,, = THP = A_,HWNKGE (142)

n=1

The total residual sumn of squares can be partitioned as follows:

Ay N
S =ee =Y ole, = Nefex + »_(en — ex)T (6 — ex) (143)

n=1 n=1

As shown previously. Sip/a? is chi-square distributed with NA — M, degrees of freedom, and
the standard error of the regression given by

Ser "
Sp = | ——— :
g (1\'1\' — M,) (114)

is an unbiased estimate of o, Define the first right-hand term of equation (143) as the sum of
squares due to bias uncertainty, which can be expressed as

Iy
. R T 1 .
S_&;\' =N\ Zf; = J’\‘OE(EK = _yEEWNKGHWNKEE (14-))
— N
where Gy = (1/N)HTH is defined in the appendix and e is the kth element of €. It can
be shown that S¢y/o? is chi-square distributed with A" — M, degrees of freedom. Variable S'y,
defined as

g 12
o Ay A
S v (1\, — AI}) (14())

is interpreted as the standard error due to bias uncertainty. Define the second right-hand term
of equation (143) as the sum of squares due to measurement uncertainty as follows:

v
Ssu = Z(én —ex)T(e. —ex) = e Wrk(Ink — Gu)Wnk e (147)

n=1

It can be shown that Sgy/o? is chi-square distributed with NK — K degrees of freedom: the
mean value
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Seu 1/2
Sy = | —= 148
Y (NK—K) (148)

. . . . . - <
is interpreted as the standard error due to measurement uncertainty. Chi-square variates Sy Jo
and S%,/0% can be shown to be independent. Hence. the ratio S3 /53 is [-distributed with
KN — M,. NK — K degrees of freedom; the test of significance for bias error is as follows:

St N
= H_’\ > Froy, vi-r(a) (149)
Y

If inequality (149) is satisfied, then the null hypothesis is rejected: this indicates the existence
of bias error at confidence level a. The analysis of variance is sununarized in table 1.

Table 1. Analysis of Variance of Residual Suim of Squares

Source of vartation Degrees of freedom [ Sum of squares | Root-mean-square
Bias uncertainty KN — M, Ssv Sy
Measurement uncertainiy NN - K Sy Sar
Residual sum of squares NN — M, Sep = Sev 4 Syvy SE

12.5. Stationarity Test of Estinated Parameters

A test for stationarity of an element ¢, contained in estimated parameter vector ¢ over N
replicated calibrations is developed in the appendix. For example, significant variation of the
intercept or slope during replicated calibrations may be detected.

Let ¢ denote the parameter vector estimated globally over N sets of A-point calibrations. Let
Cr, denote the paramecter vector estimated over the K -point data sct obtained during the nth
replication and Sqg, equal the corresponding residual sum of squares for n = 1,..., N'. Define

RY
Sse =Y Sy, (150)

n=|

4

It is shown that Syg/ o3 is chi-square distributed with V(A — M,) degrees of freedom.

To test for stationarity of parameter cm, replace the mih element of cr, by ¢m € c. and
compute the resulting error sum of squares, denoted by Sy, . forn =1,..., N. Compute the
suni

hY
“f —_ a r
b_q(,"" - E S SCus ( l')l )

n=1

It is shown that (Ss;, — Ssg)/0? is chi-square distributed with N — | degrees of freedom.
Therefore, the ratio [(Ssq, — Ssr)/(N = 1)]/{Ssa/[N(K — M,)]} is F-distributed with N —1,
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N(K — M,) degrees of freedom. The test of significance for nonstationarity of parameter ¢, is
then as follows:

. (Ss6, = Ssr) /(N = 1) .
Y(‘m — S’SR/[I\‘Y(I\- _ 1;\[7)] > F\-l.\'ll\'v‘\l,,}(ﬂ) (1')2)

13. Examples
13.1. Calibration of Single-Input- Single-Output Nonlinear Sensor

Consider an ertial angle-of-attack sensor which senses the projection of the gravitational
force onto the aircraft model axis. At zero roll, the angle of attack sensor is accurately modeled
by the following equation:

= (c,o)=Ssin(a —¢)+b (153)

where the scalar o, the angle of attack in radians, is the independent variable z; the 3 x |
parameter vector is given by ¢ = [b S ¢]T, where b = Offset in V', S = Sensitivily in V/g.
¢ = Misalignment angle in radians, and 7 s the sensor output in V. For this example input
vector z equals applied angle o and éz denotes the uncertainty of a during calibration.

Calibration design matrix Z has dimension A'x 1. Equation (153} is extended to A dimensions

as follows:

n="F(c.Z)=5sin (z—¢1)+ b1 (154)

where 7 denotes the ' x 1 angle of attack sensor output vector, z denotes the single colunmm
of design matrix Z, sin denotes the K x 1 vector obtained following element-by-element sine
function evaluation of the elements of (z — ¢1), and 1 denotes a A’ x 1 vector of ones.

Let &z denote the calibration angle uncertainty, and let ¢; denote the uncertainty of the
sensor voltage measurement with variance 2. Then the observed output y is given hy

y= flc,aot+éz)+er=Ssm(a+déz—9¢)+ b+ €k (155)
Output uncertainty &y is obtained with equations (66) and (153)
dy=5cos (z — @)+ ¢p (156)

Equation (156) is extended to A dimensions as follows:

by=5cos(z—¢l) o0ébz + €g (157)

where cos denotes the A" x 1 vector obtained following element-by-element cosine function eval-
uation of the vector z — ¢1, o denotes element-by-element multiplication of equally dimensioned
matrices, and dy. éz. and eg denote K x | vectors of uncertainties é,, da, and €, respectively.
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The observed calibration output vector, including measurement uncertainty and calibration in-
put uncertainty, is thus extended to A dimensions with the use of equation (153) to the following
equation:

y=n+béy =Ssin(z— ¢1l)+b1+ by (158)

It can be shown that the A" x R covariance matrix of y is given by
Sy = cov (by) = S¥[cos (z — ¢1) cos (z— ¢1)"] 0 By + Tg (159)
where £, and Xy are the covariance matrices of 8z and €g, respectively. It is seen that Xy and

U given by equation (71) are symnmnetric and positive definite.

The least-squares estimate of parameter vector ¢ is obtained by minimization of the following
quadratic form given in equation (70):

S =[y — b1 — S sin (2 —01)]TUF'[y — b1 — S sin (z — o1)] {160)
The A x 3 Jacobian matrix of f(¢. Z) is found to be the following:
Fo(c.z) = [1: sin {z — ¢1) : — S cos(z — ¢l)] (161)

The least-squares estimated coefficient vector ¢ is obtained by solving the following I x 3 system

of nonlinear equations:

hic,Z) =[y — b1 — S sin (z — ¢1)]"U"'[F.(c, Z)]
=e(c.Z)TU ' [Fe(c,Z)] =0 (162)

where e(c, Z) = [y — b1 — S sin (z — ¢1)]. The standard error of the regression is given by

(163)

~ - R ~ . ~ 172
G {[y — b1 — S sin (z — ¢1)]TU- [y — b1 — S sin (z — ¢1)] }
Dy = T "
hN-3

which provides an unbiased estimate of op.

From equation (161), equation (162) may be partitioned as follows:
hic,Z) = [eT(c. 2)U™ "1 ' €T(c.Z)U™" sin (z— ¢1) | -SeT(c,Z)U™" cos (z —¢1)]  (164)
Then matrix R = [0h(¢,Z)/dc], given in equation (81), is found to be

R=F"(c.Z)U 'F.(c.Z) + Hg (165)

29



where

0 0 0
Hp= |0 0 —eT(¢c,Z)U ' cos (z — ¢1) (166)

0 —eT(c.Z)U 'cos (z—01) SeT(c,Z)U 'sin(z — ¢1)

The covariance matrix of ¢, denoted by T, = ¢2.Q! can now be computed with equation (86).
The three-dimensional confidence ellipsoid for ¢ is given by equation (98): calibration confidence
mtervals and prediction intervals for predicted output voltages are given by equations (102) and
(105). respectively.

Following calibration, confidence intervals and prediction intervals for inferred input angles,
given observed angle of attack sensor output voltages are now obtained. For this system. a
unique inverse function of f(e,a) exists for values of o in the interval [—7 /2,7 /2], given by

- . 1) - - —
a =aresit | ——] — ¢ (167)
S

Confidence and prediction intervals for a are obtained by dividing equations (102) and (105).
respectively, by the gradient of f(c,«) with respect to o, where

Af(c.a)

- = S cos (a—¢) (168)
da

The desired 95 percent calibration confidence interval for angle o 1s then

- 15—3(0.95)Syvp (¢
m—uwng’j( Jovpfar) (169)
S cos (a -+ @)
where p,(z) is defined in equation (104). Similarly, the 95 percent prediction interval for new
measurement o, is obtained as

o~

- . oy 1172
o — ()] < L(095)Sy [P2( ) + 0i/at]"
¢~ =

- — (170)
S cos (ag+ @)

where a,(¢) denotes the predicted value of new measurement « inferred from measured output
Yy by means of equation (167).

13.2. Two-Input-Two-Output Linear Instrument

Consider a two-input—two-output linear process—for example, a two-component strain-gauge
balance with 1 x 2 input vector x = [, ], 3 X 1 extended input vector z' =[lx r,] 2% 1
output vector y = [y, y.]. and measurement error vector eg = [€ €,)]. Coeflicient matrix C is
given by

30



Cop Co2
C:[C.] ('.)]—_— Cry Cyo (171)
G O
where ¢, = [co, € o] forn =1,2.
For a single observation, the output is given by y = zTC 4 eg. During calibration. K

calibratiou input vectors are applied, represented by the following A x 3 design matrix Z:

Loy ape

J

Measurenient uncertainty is represented by A x 2 measurement error matrix Eg. where

Eg = [EE-lfn-z] =

€n

(172)
(IL’-
€

(173)
()

The KN x K covariance matrix for error vectors €g.,, and €g.,,. form and n = 1 and 2. respectively,

is denoted by g .

For A calibration measurements, the A" x N output matrix Y is given by

Y = (Z+6Z)C + Eg (174)

where K x M, input error matrix 87 is given by

87 = [0 6x.,6x.y) =

(S.I,']] (S.l'l-_)

by by

0 by bxp,

The 2 x 2 covariance matrix of input error vectors éx.; and éx.; is denoted by Ex“.

2"11 =
gy
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Let input vector x be random with zero-mean uncertainty e, = [y, €,,]. Then extended input
vector zT has uncertainty €F = [0 € €,]; K x 3 design matrix Z has uncertainty matrix Eg,
whose rows €7, and ez, have 3 x 3 covariance matrix X, , where

U 0 0
Sy, = e ] |0 T 7 (177)
U 0'/\':34 12 U‘\V,‘J,Q'_)

Constder process outputs y, and ys separately: subscripts are omitted in the following computa-
tions. The total error vector ey, expressed as ey = Ezc + €5, expands o

Gy O + €, Cy + €

T2
oy €1 + €1y €2 + ¢
€y = (178)

(J',\ | g + (1-,‘2(".3 + € I

The covariance between elements ¢, and ¢, of total error vector ¢, is given by

i

T 2 - -
OV (€4, ¢y) = €' Bgge + 05 = cjov, | +eieioy, , + C'j("‘),zu + 04 (179)

The confidence interval at level 1 — a for estimated coefficient vector ¢ is expressed as a three-
dimensional ellipsoid as

(¢ =€)TQ(c =€) < 3S*F i _s(0) (180)

The ellipsoid can be characterized as follows: Since Q is symmetric, it is unitarily similar to a
real diagonal matrix A: in particular Q = PTAP, where A consists of the eigenvalues of Q and
P is unitary; that is, PPT = I. Matrix P consists of the set of orthonormal eigenvectors of Q.
Apply the transformation v = Pc to coefficient vector ¢. The confidence ellipsoid then simplifies
to the form

“ITA‘Y = X{7y - ’}Al)2 + Ay — ’72 )2 + /\3(7'3 - :73)2 < :;SQFZH\'—:S(”) (181)

Let A denote the ith eigenvalue of Q. It is readily seen that the ith vertex of the ellipsoid is
located at distance

(182)

from point ¢ in the direction of the corresponding eigenvector, that is. the ith column of P.
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The uncertainty of the regression function. which is dependent upon extended mput vector
z, 1s expressed by the calibration confidence interval at level of inequality (34):

(ZTQ_IZ)]/ZSH\'-;;((!)
< (pi+ 2p00) + 2pa00 4 poxi + 2ppp0 a0, + ,l);s;;-l':::)I/ZSU\'—:}(U) (183)

IA

y—y

where pi; is the ijth element of Q7.

After calibration, apply input z, and make a single new measurement, where the measurement
uncertainty is ¢. The prediction interval for output yo is obtained as follows with equation (39):

A

9 1/2
~ T, _ -
ly —u] < (U—“,‘*' z, Q IZn) Sty s(a)

)

) 1/
= (—“' + p0 At 2p00) + 2p1rs + ot + 2ppds + /':z:;J’:j) Sty _s(a) (184)

Confidence and prediction intervals for inferred inputs are obtained as follows: let I x 2
vector &y = [y &3] denote the simultaneous two-dimensional calibration confidence interval
or prediction interval defined in equations (183) and (184) that corresponds to observed output
vector y,. Let éx denote the uncertainty (calibration confidence interval or prediction interval)
of inferred input vector x, corresponding to observed output y,. Then éx is given by

8Xo = 6yuC|‘.j (IZ\'J—))
where
~ (AL »
C.=| (156)
2] 22

14. Concluding Remarks

A generalized statistical treatment of uncertainty analysis for mstrument calibration and
application has been developed. Techniques for propagation of measurement uncertainties
through experimental data reduction equations and for presentation of final engineering test
data results. which are well-established in the literature, have not been presented. Instead. the
emphasis has been on rigorous development of the correct statistical treatment of correlated
measurement. uncertainties, correlated calibration standard uncertainties, nonlinear mathemati-
cal instrument models, and replicated calibrations, for which only heuristic approaches had been
available. Correlated bias errors may produce significant magnification of the uncertainties of
the calibration standard.

The effects of mathematical modeling error upon bias uncertainties have been quantified. A
design figure of merit has been established to assess the effects of experimental design on both
precision and bias uncertainties during calibration. Generally, predicted output variance due to
precision errors is minimized by calibrating only at zero and full-scale loads, whereas predicted
output variance due to modeling error is minimized by uniformly spacing test points throughout
the operating envelope of the instrument.
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Calibration confidence intervals and prediction intervals of a new measurement, for both the
predicted output and the inferred input, are obtained as functions of the applied load. Previously.
instrument uncertainties were typically specified as constant error bands or as a fixed percentage
of the full-scale mnput.

Replicated calibration is necessary to obtain adequate statistical sampling. to test for
nonstationarity. and to test for significant bias uncertainty. Analyses of variance of the regression
residual sum of squares have been applied to obtain individual estimated values of the standard
error due to bias uncertainty and the standard error due to precision uncertainty.

Additional associated uncertainty analyses are in progress which apply the results of this
document to the force sensor modceled by a linear function, the strain-gauge bhalance modeled
by a second-degree multivariate polynomial, and the mertial model attitude sensor in piteh and
roll modeled by a nonlinear coordinate transformation. The techniques have also been applied
to calibration of a skin friction balance modeled by a quadratic polynonnal.
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Appendix
Mathematical Derivations

Al. Preluninaries

Al.1. Eztended Least-Squares Analysis. Let the instrument calibration data input-output
relationship be expressed m matrix form as follows:

y=Zc+eg (187)

where Z is the K x M, calibration design matrix, ¢ is the Af, x 1 parameter vector, y is the

A x 1 output observation vector, and € is the A x 1 random measurenient error vector with
| F

zero mean and N x A covariance matrix Bg. It s assumed that Xg can be expressed as

g = 0lU (188)

where A x A" matrix U is symmetric and positive definite and measurement variance o7 is to
be determined. Then U can be decomposed into the matrix produoct

U = pPp7T (189)

where A x A matrix P is a nonsingular lower triangular matrix (ref. 12).  For notational

. _ ~13T
convenience let P~T =[P7]

Al1.2. Lemmas and Theorems.

The following simple propositions, used frequently in the development, are proven for later
use. A matrix is said to be diagonalizable if it is similar to a diagonal matrix.

Lemmal. U™l =pP-Tp!

Proof:

ur'ry=rPTP TP
—P(P'P)'P' =PP' = I (190)

where I is the A x A identity matrix.

QED

Lemma 2. Matrix A is idempotent if and only if it is diagonalizable and its eigenvalues are
either 0 or 1.

Proof of Sufficiency: By hypothesis A*=A. It is well-known from linear algebra (ref. 12) that
the eigenvalues of A must satisfy the scalar equation A? = A, from which 1t follows that A = 0
or A= 1. In reference 11, A is shown to be diagonalizable.

QED Sufficiency
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Proof of Necessity: By hypothesis the eigenvalues of A are either 0 or 1. Since A is diagonalizable
a nonsingular matrix I' exists such that A = T I, "' and I, is a diagonal matrix of zeros and
ones. It Is clear that I,I, = I,. Therefore, AA = A.

QED Necessity

Lemuna 3.  If matrices A and B have dimension N x M and M x N, respectively, then
tr(AB) = tr (BA).

Proof:
Y Y
“‘. (AB) = Z AB H“ Z Z nm ”7”
sn=l n=1 ne=1
\Y Y v/
= bunttsn = (BA),,,, = tr (BA) (191)
m=1 n=1 m=I
QED

Lemma 4. If square matrix A is diagonalizable, then tr (A) = tr(A). where A is the diagonal
matrix of eigenvalues of A.

Proof: By hypothesis there exists nonsingular matrix I' such that A= TAT ! (ref. 12). By using
Lemma 3.

tr{A)=tr (FAT") = tr (IT"'TA) = tr (A) (192)

QED

Lemma 5. For N x N matrices A and B, tr (A + B) = tr(A) + tr (B).

Proof:

N AY N

tr(A+ B) = Z(a,,,, +b,,) = Za,,,, + Z b.,

n=1 n=i n=1

= tr (A)+ tr (B) (193)
QLD

Lemma 6. If matrix A is idempotent, then rank (A) = tr (A).
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Proof: By Lemma 2, A is diagonalizable and its eigenvalues are either 0 or 1. Then, by Lemma 4,
tr{A) = tr (A), where A is the diagonal matrix of eigenvalues. Hence, rank (A) = tr (A).

QED

Lemma 7. If A x A matrix A is idempotent, then Ix — A is idempotent with rank A — 7,
where 7, = rank (A).

Proof:

(Ix ~A)Ixk —A)=Ix —2A+AA =TIy - A

By Lemmmas b and 6, rank (Ixk — A) = N — .

QED

Theorem 1. Let Sqp = €T We where 1 x N vector € is normally distributed with covariance
matrix ¥, = ¢iIy and Wis an Nx N symmetric matrix with rank ». Then Sg-/o% is chi-square
distributed with r degrees of freedom and expected value r if and only if W is idempotent.

Proof of Necessily: Since W ois idempotent, by Lemma 2 its eigenvalues are either 0 or 1. Hence,
there exists an N x NV matrix I such that

W = "Iyl (194)

where T'TI' = Iy, and Iw is diagonal with r ones and N — r zeros. Note that Iy = Iwlw. Let
¢(w = Iwl'e. Then

CrGw =€ TTIgTe = € We =Sy (195)
Moreover,

Tow = € [Cwlw] = IwlZplMIw

= A Iwl Ty = 011w (196)

Therefore, {w/o is normally distributed with covariance matrix Iy. Thus, Siy- /07 equals the
sum of squares of r independent unit variance normal variates, and therefore Sg/o# is chi-
square distributed with » degrees of freedom (ref. 7). The expected value of Sg- is obtained by
using Lemma 3 and equations (195) and (196) to yield

E[Ssu]= € [tr (Cew)] = € [ir(Cwiw)]
=1r(Z;,) =ctr(Iy) = a’r (197)

QED Necessity
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Proof of Sufficiency: By hypothesis Sy /0% is chi-square distributed with » degrees of freedom
and, hence, equals the sum of squares of r independent zero-mean, unit-variance normal variates.
Svimmetric matrix W can be written as

W = ITART (198)

where NV x N diagonal matrix Aw contains r nonzero elements since W has rank r. Define
2 : . 12
(w = A“/{.le, where the elements of diagonal matrix Av(z equal the square roots of the

corresponding elements of Aw. Note that (w contains r nonzero elements. Then

Cwlw = € TTAy e = € We =5 (199)
But
T = lCwCh] = AWTSeITAY = a2 A TTTAY = 0i Aw (200)

. . )
If any nonzero element of Aw does not equal 1, the hypothesis that Sq-/er equals the sum of
squares of » imdependent unit-variance normal variates i1s contradicted. Hence, diagonal matrix
Aw contains only ones and zeros, and by Lemma 2, W is idempotent.

QED Sufliciency

Theorem 2 (ref. 10). Let €Te = T g, for 1 <m < M, where 1 x N random vector € is normally
distributed with covariance matrix In. ¢,, = €T Q€. and nonnegative indefinite N x N matrix
Q,, is symmetric with rank r,,. Then the variables ¢,, are independent chi-square distributed
random variables if and only if >~ r,, = N. for 1 <m < M.

Proof of Necessity: By Theorem 1. €Te is chi-square distributed. Also, by hypothesis

M v
€'e= E €'Q,€ = E U (201)
m=1 m=I
where Q,, has rauk »,, and
A
2 Pm=N (202)
m=1

Since Q,, Is symmetric and nonnegative indefinite with rank r,, it can be expressed in the form

Q. = PTA,P, (203)

where P,, is orthonormal and A,, is diagonal, containing r,, positive elements and (N — r,,)
zero elements on the diagonal. After rearranging its elements, matrix Q,, can be wrtten in
partitioned form as
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1\ Ty : 0 Prm

Q.= [P.T,,, :Pi,,] — — —||==|=PA,P, (204)
0 ' o P..

where NxN matrix P =[PT !PT P

and A, has dimension »,, x r,. Define r,, x N matrix R, as

has dimension r,, x N, P, has dimension (N —r,,)x N,

T

R,, = AP (205)

Ty T ey, Yy

It is seen that R,, has rank r, and that RT P, = Q,. Also define r,, x | vector §,, as

T

& =R, x (206)

‘III
where x 1s an arbitrary N x 1 normally distributed random vector with covariance matnx Iy.
i . T A7 AT . ) y .
Then, inner product ¢ = €7 €, = X" Qux forms N x N matrix R, from the set of M matrices
as

T

R, =| : (207)
R”' A

It follows from equation (202) that R, has rank N and is therefore nonsingular. Construct N x 1
vector € from subvectors &, ..., &€y, defined in equation (206) as

&
§=] 1 | =Rx (208)
&y
It follows that
M M
x'x = Z x'Q,x = Z e, =€ =x"RIR.x (209)
m=1 m=1

Since equation (209) holds for arbitrary vector x, it follows that RTR, = In = R,RT and.
hence, R, is orthonormal. The covariance matrix of £ 1s found to be

=& [¢€"] =R, £ [x"|RT = R.RT = Iy (210)
Therefore, the covariance matrix of £, equals I,,. It then follows from Theorem 1 that random

variable ¢,, = €T¢,, is chi-square distributed with »,, degrees of freedom. Moreover, since R, is
orthonornal, the set of random variables ¢, is mutually independent.

QED Necessity
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Proof of Sufficiency: Clonstruct matrix R, and vector € as before. By hypothesis, the elements &,
are mutually independent with chi-square distributed inner products; thus, covariance matrix X,
contains = Xr,, ones on the diagonal and zeros elsewhere. Since xTx is chi-square distributed
with N degrees of freedom, it follows from equation (209) that £€T¢ islikewise distributed. Hence,
rank ¢ equals N and NV =»r.

QED Sufficiency

A1.3. Linear Least-Squares Estimation.

From equation (187), note that the expected value of y 1s given by

Ely] = Zc (211)
Define A x | transformed observation vector v as
v=Ply (212)
Fgnation (187) now becomes
v=P 'Zc+Pleg =P 'Zc +e, (213)
where K x 1 vector & = P~ 'ep. lmmediately the expected value of v is
py = E[v] = P Zc (214)

Then the A x A covariance matrix of v (which equals the covariance matrix of €, as well),
denoted by X, is obtained with the help of equations (188) and (189) as

X,

Ellv — ) v — )T = P ' Elepe P 7T
P 'SP T = AP'PPTPT = 0l (215)

Thus the elements of v and of €, are uncorrelated.

Based on transformed output observation vector v, the desire is to estimate the value of
parameter vector ¢, denoted by ¢, which mininunzes the sum of squares Ssg given by the following
inner product:

Ssg =(v=p)"(v—py)=(v-P'Ze)" (v~ P'Zc) (216)
Note that equation (216} may be rewritten as

Swo=(y—2c¢)"P TPy —Z¢)=(y — Z¢)"U (y — Z¢) (217)
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It 1s well-known (ref. 7) that the least-squares value ¢ which minimizes equation (216) is obtained
as follows:

c

(P'Z)N(P'Z)] ' (P 'Z)"™v = (Z"P'P'Z)'Z2P v
=(Z'U'Z2)"'Z2"P v = Q'Z"P v (218)

where M, x M, generalized moment matrix Q of the experunental design is defined as

QO=2"U"'7 (219)

It is to be noted that QT = Q. With the help of equations (213), (211), and (218) the expected
value of ¢ is found to be an unbiased estimate of ¢ as follows:

Ee]=Q7'Z2TP T £[v]= Q'ZTU 'Z¢
=Q 'Qe=c (220)
The covariance matrix of ¢ is found by first combining equations (213) and (218) to obtain
c—c=Q'Z"TP TP '"Zc+e)—c=Q'ZTU " Zc + Q'Z"P Te, — ¢

=Q'Qc+Q'ZTP e, —c=Q7'ZTP "¢, (221)

It is seen that ¢—c is normally distributed since €, is normally distributed. From equations (219)
and (221) it follows that M, x M, covariance matrix E: 18 given by

T-=fc-c)c-c)T]=Q'ZTP T £leey] = PT'ZQ
=i Q'ZTU'ZQ = 41Q7'QQ T = 71Q"! (222)
Define i\’ x | predicted output vector v by
v=P'Ze¢ (223)
and define A x 1 residual vector ¢, = v — v. Using equations (213), (218), and (223) vields
v-v=v-P'ZQ'2TP Ty

(Ix —P'ZQ7'ZTP ") (P~'Z¢ + ¢,)
(Ix —P'ZQ7'2Z™P M) e, = Wge, (224)

T
-
l

where N x i matrix Wy 1s defined as

Wi = Ix — Qg (225)

and A x N matrnix Qk 1s defined as
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Qx =(P'2)Q(P'Z)T (226)
An integer subscript will be appended as needed to distinguish the dimension of matrices U.
W, . Z. Q. and I for nonreplicated and replicated experimental designs.

It is scen that 2k 1s both symmetric and idempotent as follows:

Qe = [P'ZQ'2TP "] [PT'2Q7'Z2TP ]
=P '2zQ'2'U"'2Q'Z2"P T
=P'2Q7'QQ'Z2™P T =P '2Q'Z"P T = (227)

Also, using Lemmas 3.4, and 6,

rank (k) =tr(P'ZQ'Z"P™ ") = t: (Q7'Z2TPTP'Z)
=tr{Q'Q) = M (228)

Then by Lemma 7. Wk is idempotent with rank A — M,.

It is seen that ey is normally distributed. From equation (224), the expected value of ey is
zero. The covariance matrix of e, then is found by using equations (215) and (224) as follows:

VoY

=i W, Wg =0l W, (229)

. =£ [6,e]] = Wi & [e,eT] WE

The M, x N covariance matrix of ¢ and e, is shown to be zero (ref. 7), and with the help of
equation (215),

cov (€.8,) =E[(e =)ol =Q'ZTP T £ el Ik —P'ZQ'ZTPT)
= (Q7'ZTPT-Q'2"P ") =0 (230)
Thus ¢ and e, are uncorrelated and independent.
The residual sum of squares Sgr, defined as the sum of squares of the elements of residual

vector ey, is obtained with the help of equation (224) as

Sir=ele, = el WEWye, = er Wie, (231)

E[Ssr] = o:(KN — M,) (232)

From equation (228) and Theorem 1, Sgr/o% is chi-square distributed with A — A, degrees of
freedom and expected value AN — M, .
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Therefore S, denoted the standard error, is defined as

S —( Ssr )W (233)
TTEAN - M, v

Note that Sy is an unbilased estimate of oy

A confidence ellipsoid for € is now obtained. Evaluate the quadratic form
Se = — &)TQe — ¢

with equation (221) to vield

Se =(c=a)TQe =)= eTP'ZQ'Z"P e, = € Sdxe, (231)

Recall that K x A matrix Qg was shown by equation (228) to be idempotent with rank Af,.
Then by Theorem 1. it follows that Sy /o is chissquare distributed with M, degrees of freedom
and expected value M,. Since ¢ — ¢ and €, are independent, Sy and Sy, are independent.
Hence, the ratio F = [Se/(e: M)/ {Sse/[oR(N — M,)]} s F-distributed with M, K — A,
degrees of freedom (ref. 6). Therefore, a confidence interval for ¢ at level a is given by the
following inequality:

(¢ —¢)TQ(c—¢) < M, S} Fy,n_,(a) (235)

where F; ;(a) is the I —a tail of the F-distribution with i, j degrees of freedom and Si is defined
in equation (233). The quadratic form of equation (235) defines an ellipsoid in A, dimensional
hy perspace termed the confide nce dlipsodd.

Given M, x 1 inpul vector z. the corresponding predicted scalar output y is given by

y(z) =2"¢ (236)

From equation (220), the expected value of y(z) equals zTc. With equations (222) and (236).
the variance of y(z) is obtained as follows:

7i(a) = 45 ~ El@)}) = €T (0 = &)
£l2"(c — &)c — )T2) = 2"E[(c — &) (e — &)z

ZTE‘,Z = UQFZTQ_lz (237)

[l

Then the normally distributed variate 6y(z)/ [UF(ZTQ"Z)W] has zero mean and unit variance.
where &y = y— 7. Recall that S, /o3 is chi-square distributed with A — M, degrees of freedon.
Then the ratio t defined as follows has Student’s {-distribution with A" — M, degrees of freedom

(ref. 7):

_ 85(2)/ [0r(27Q ') "]

- : 935
Ser/[op( K — M) (238)
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Combine equations (233), (237), and (238) to obtain the calibration output confidence interval
defined by the following inequality:

ly— 3] < (2TQ7'2) " Spty v, (n/2) (239)

where ¢, (a) is the a-percentile of the two-tailed t-distribution with n degrees of freedom.

A2, Effects of Process Modeling Error

Consider a process f(c¢.z) modeled as a linear function of extended input vector z

fle.z) =2zc¢ (240)

whereas the actual functional relationship is

fle.z) = zc 4+ ¥(2) (241)

where y(z) is the modeling error. Let the system be calibrated with calibration design Z in
accordance with equation (187) based ou the linear model in equation (240). The observed
calibration output is then

y=ZetaZ)+en (212)

where v(Z) denotes the K x | vector of modeling errors

7(21)
(z) = : (243)

7(7‘/\’)
Estimated coefficient vector ¢ is obtained from equations {218) and (242) as follows:

¢=Q'2Z"U 'y = Q7'Z2TU [Zc + ¥(Z) + €]
=+ Q 'ZTU[YZ) + eg) (244)

The expected value of € is seen to be

Ele] = e+ Q'ZTU 'y(Z) (245)

Predicted output vector ¥y becomes

Yy=Zc =Zc+ZQ '2ZTU ' [V(Z) + €] (246)
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It follows from equation (246) that the expected value of predicted output vector y is given by

E[F] = Ze +2Q ' ZTU'~(Z) (247)

Combine equations (242) and (246) with (225) to obtain residual vector ¢, as

v-v=P N y—y)=P" Ix—-ZQ'Z'P TP7') [v(Z) + €§]
=(Ix - P'ZQ7'Z'P ") [PT'v(Z) + €] = Wk[P7'4(Z) 4 €] (248)

fll

€y

The expected value of @, is seen to be

&) = WP~ 'y(2) (219)

After combining equations (215), (248), and (249). the covariance matrix of ¢, is found to be

B = &6y — E@)][oy — E@)T) = W (250)

ey

Since Wy is idempotent, the residual sum of squares is obtained from equation (248) as follows:

S =ote, = [P7'Y(Z) 4 €,|"Wg[P'HZ) + ¢, (251)
Becanse Wy has rank N — M, the expected value of S gp s

1S5 = (K — Mot +~(Z)TP-TW, P~ ~(Z) (252)
Note that S = [Sqr/(N — A,)]'"% is no longer an unbiased estimate of ¢ when modeling error

~(z) is nonzero.

C'onsider arbitrary input vector z. The corresponding output y, obtained with equation (241),

y = flc,z) = zc+5(z2) (253)

The predicted output is y = z¢. Prediction error 8y is then

y—3=7(z) — ZQ'ZTU[(Z) + €] (254)

by
The expected mean-square prediction error is obtained from equation (254) as

U%(z) = £[69Y = [v(2) — 2Q'ZTU 'y(Z))" + 0227 Q 'z (255)
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A3. Nonlinear Least-Squares Estimation With Input Uncertainty

Let ¢ denote the M. x | parameter vector; (z + 6z), the 1 x A, stochastic input vector, where
z is the 1 x M, nominal input vector and éz is the | x M, stochastic mput uncertainty vector:
¢, the measurement uncertainty, a zero-mean random variable. Then the process output is of
the forn

y=fles+62) +e = fle.n)+ by (256)
The uncertainty dy, of the kth observation is then
by =0 f 4+ ey, (257)

where

8f.u = filc,2,)07 (258)

and the | x A, vector f,(c.z,) is defined as

f,(c.2,) = [f—f(—c—“—)] (259)
dz.
Define A x 1 error vector 8f, as
of, = [of ... 6117 (260)

It is seen that &f, is given by
f,(c.2,)027

of, = : (261)

f,(c,z,\-)ﬁz’,l;

Note that subscript z is appended to indicate that éf depends on the entire design matrix Z.
The K x A covariance matrix of 6f, is given by

g, = E[of,61] (262)

The K x | output vector y is obtained by extending scalar equation (256) to the following A x |
vector equation

where Z is the A x M, design matrix, and 8y is the A" x | zero-mean combined output uncertainty

vector given by
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by =6, + €g (264)

and dy has A x I combined output covariance matrix 2y which can be expressed as

Yy =%, + X (265)
The assumption is that Xy can be expressed in the form of equation (188), namely Ty = 01U,

where U satisfies the conditions of equation (189), with transformed A x 1 output vector v
defined m equation (213). and equation (263) becomes

v =P f(c.Z)+ bv (266)

where A x I uncertainty vector v = P~'éy and A" x A" matrix P is defined as i equation ( 189).
The expected value of é&v is zero, and the expected value of v is

iy = Ev] = P 'f(c, Z) C(267)
The K x I covariance matrix of év, denoted by B, ., then becomes
B, =EvevT =P EPysyTIP T = 2P UP T =0l I, (268)

It is seen that év is uncorrelated and normally distributed whenever dy 1s normally
distributed. As in equation (216) define the sum of squares as

Sw=(v—p)" (v—p)=[v-P 'f(c.2)"[v-P 'f(c.Z)) (269)

To mininuze Sy, (ref. 13) compute its gradient with respect to ¢ and equate the resultant 1x M,
set of equations to zero as follows:

_ 1 (354 _ 1 po vt | OF
h= 3 ( e ) =v-P 'f(c.Z2)'P [%(C‘Z)]
=[v-P'f(c.Z)]"P'E=0 - (270)

where h is a function of independent arguments v, ¢, and Z and has dimension 1 x A,
[v - P 'f(c,Z)]is K x I. Pis K x K, and A x M, matrix F_ is defined as

dfi(ez) dfyiery)
e ..- (:)r‘\/(,
of
F.=l-(c.2) = (271)
dc
A fiviezy) fplezy)
o o oy,
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Finally O denotes a 1 x M, vector of zeros. Equation (270) is solved numerically for ¢ by Newton-
Raphson iteration or similar method. Necessary conditions for the existence of a solution are

now obtained.

To obtain the uncertainty of ¢ denoted by éc, compute the total differential of equation (270)
and equate to zero as follows:

sh = évT [g%] +6"TR =0 (272)

where K x M, matrix [0h/dv] is seen to equal

Jh B -
—| =P'F. (273)
ov
and the M, x M. matrix R 15 defined as
G2 L3
) 8y
r')("f T ey e \l,
dh
R=|—| = : : (274)
(’)C . R .
(-’2 ,\'\Q (')2.\"\‘(‘)
P e,

A necessary condition for the existence of a solution to equation (270) for ¢ and to equation (272)
for 8¢ 15 that matrix R be nonsingular in some open interval about ¢ (ref. 11).

To evaluate R differentiate equation (270) with respect to ¢ as indicated to obtain

e

R=F'P"P'F, +[v-P'f(c.2)]"P '~ F,=FIU'F, + Hg (275

where Hr 1s defined as

He=[v-P 'f(c.Z))"P™' © F.. (276)

The M, x M. x I\ array F.. is defined as the partial derivative of M. x A array FT with respect.
to vector ¢: that is,

F(‘(‘

de

AT
l:ch (c,Z)] (277)

where the ijkth element of Fe(c. Z) equals the second partial derivative of the kth element of
function f(c,Z) with respect to ¢; and ¢; as follows:

Y] .
d f‘,((,‘zl.) (278)
ﬁ(,',‘ 8(’j

fcc.ijk =
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for | < 1,7 < M, and 1 < k < KA. The & operator denotes formation of the inner product of
1 x A row vector [v — P~'f(¢,Z)]TP~! with each N x I colunm of array F... Thus the 7jth
element of M, x M, matrix Hg is given by

hy,;=[v—P'fc.2Z)] P'F,, =e'P'F, (279)

for 1 < i.j < M, where F_; denotes the ijth (A x 1) column of array F., and
e, = v— P 'f(c.Z). After least-squares estimation of vector ¢, vector e, becomes residual vector
e, defined subsequently. If norm || &, || is small, matrix Hg can be neglected in equation (275).

Then R is closely approximated by

R~ FTU"'F. (280)

Note that matrix R has rank M, 1e., is nonsingular, only if rank (F.) = M. Combine
equations (272) and (273) and solve for M, x 1 uncertainty vector &¢ to yield

bc = —R7'FTP Tév (281)

From equation (281), é¢ has zero mean and covariance matrix as follows:

S, =R'FTP TS, P'F.R!
=R 'FTU'F R = 0;Q;' (282)

where M. x M. matrix Q. equals

Q.= [R'FTU'F.R']" (283)

Note that satisfaction of the approximation in equation (280) 1s a sufficient condition, but not
necessary, for the existence of matrix Q.. Fquation (280) implies that

Q. ~R (254)

AS3.1. Residual Sum of Squares.

As for calibration design matrix Z and estimated parameter vector ¢, define A x 1 predicted
output vector v as

where
Q= (P'F)R (P'F,)" (286)

As before, N x | residual vector ey is defined as
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v—v =P '[f(c.Z) — f(C.Z)] + év (287)

e,

Let 8f. = f(¢.Z) — f(c,Z), which is closely approximated by 6f. = F.(c¢,Z)é¢c. Then
cquation (287) can be expressed in differential form as

e, =P 'F (c.Z)6¢ + év (288)

C'ombine equations (281), (286), and (288) to ohtain

e, = (Ix =P 'F.R'FTPT) év = Wy, év (289)

where
We,. =1Ix — Or (290)

Subscript A, appended to denote the matrix dimension, is treated as an index. If approximation
in equation (280) holds, then 2§ is idempotent as 1s shown in the following equation:

Qe =P 'F.R'FTP TP 'F.R'FTPT
=P 'F.R' (FTU'F,)R'FTP T
=P 'F.R'FIP T = Q; (291)

By using Lenunas 2, 3, and 6,

rank (2p) = tr (PT'F,R'FTP-T) = tr (R"'FTP-"P'F,)
=tr (RT'FTU'F,) = tr (R™'R) = AL, (292)

Therefore, by Lemma 7, Wg, is idempotent with rank N — M.

The covariance matrix of €, 1s given by

T. =0} Wr, (293)
and the residual sum of squares Sqr 1s given by
Sep = ete, = 6vTWyg bv (294)

Then by Theorem 1, S¢r Is chi-square distributed with A — M. degrees of freedom and with
expected value

E(Ser) = (K = M.)ol (295)

An unbiased estimate of oy is provided by standard error Sy, where
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g 1/2
. DISE
Sy = [ —E— 296
' (I\'-M,.) (296)

A confidence interval for oy at confidence level a is given by

K — M5y R — M)YLS,
( S )25, o)
\1]+n)/2 \H—n)/'z

where \, i1s the o percentile value of the chi-square distribution with A — A, degrees of freedom.

A3.2. Confidence Intervals.

A confidence ellipsoid is now obtamed for ¢. Let

S =(c—-8)TQelc—¢&)=6vTP'F.R'Q.R'FTP Tov
= o&vTP'F.RI'FTP Tov = 6vTQpév (298)

Because §2p is idempotent, Ssc/ay is chi-square distributed with M. degrees of freedom by
Theorem 1. Hence, the ratio F' = [Sq./oi M J/{Ssp/lea(N — M)} is F-distributed with
M., K — M, degrees of freedom (ref. 7). Then the confidence ellipsoid at level a for ¢ is defined
by

(c—e)T"Quc —¢) < MSEFy pow(a) (299)
For arbitrary input vector z, the corresponding predicted scalar output denoted by ¥(z) is

y(z) = f(c. z) (300)

The uncertainty of y(z) due to calibration uncertainty alone is obtained with equation (281) as

by =y—y=flez)- f(c.z2)
= [d—f;w] 6 = —£¥(c,z)R'FTP'év (301)
C

where M. x | gradient vector fo(¢,2z) is defined as

f.(c.z) = [W] (302)

It follows that 8y is normally distributed with zero expected value. Then the expected value of

y(z) is

Elu(z)] = flc,2) (303)



The variance of predicted output y(z), denoted the variance function, is obtained from equa-
tion {301) as follows: :

o*(z) = £ §3) = £T(c.0)R™ FIP ' E6v svTIPTER ' (c. 2)
= (T%f;r(c,z)RilF:_rUle.-R"fc(c, z)
= (T%f?(C,Z)Q;lf,.(C. Z) (304)

If the approximation in equation (280) holds, then equation (304) simplifies to

oi(z) = o AT (c.z)R f.(c.2) (305)
. L . - . 12 .
The normally distributed variate oy(z)/ {ny [f:,r(c,z)Qr fr((:.z)] } has zero-mean and unit

variance. It was shown previously that Syz/a? is chi-square distributed with K — A, degrees
of freedom when the approximation in equation (280) holds. Then the ratio ¢ defined below has
Student’s f-distribution with A — M. degrees of freedom.

= S - ~ 306
Ser/ oy (K — M) (306)

Then the output prediction confidence interval at o confidence level is given by
lvy—yl< [frT(E‘Z)QEI f.(c, Z)]l/zss'f/\'—.\/,.(“‘/2) (307)

where ¢, (0) is the o percentile value of the two-tailed t-distribution with n degrees of freedom.

A4. Analysis of Replicated Calibrations

In the following development, subscripts K and NK are appended to matrices I. Z, Q. U,
and 2 to distinguish between single calibrations (A observations) and replicated calibrations
( NK observations). C'onsider an arbitrary A x M, experimental design matrix Zg for calibration
of a single- output sensor. which is replicated N times. The sets of input loading uncertainties
are seen to be mtercorrelated among replications. The N A x M, replicated experinental design

Znk 18
Zy
Tk = Z:K —H"Zy (308)
Zx

where N x N R replication matrix H is defined as

H=[Ix Ix ... Ik] (309)
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The following properties of H are used in the subsequent development. The N x A matrix
product HHT equals

HH" = NI, (310)

and NN x NA matrix product HTH equals

IK IK PN IK
I Ix ... Ig
H'H=| & ¥ (311)
Iy Ix .. Ig
For any A x A matrix A. the NN x NA matrix product HTAH equals
A A A
T A A A
HAH=| . (312)
A A ... A
Let Dy be an VA x N A block diagonal matrix constructed from A" x A" matnx A as
A 0k ... Ok
O A ... Ok
Dwk=| . N (313)
0k Ox ... A
where Ok is a N x N matrix of zeros. Then it follows that
HDyxHT = NA (314)

A4.1. Single-Input -Single- Output Process With Uncorrelated Uncertainties.

Over N replicated calibrations, let the elements of N A'x | measurement uncertamty vector eg
be uncorrelated with N A'x N A" covariance matrix 04 Iyk, and let the unknown bias uncertainties
of a single replication due to the calibration standard be uncorrelated with covariance matrix
Ik . Since the loading sequence is replicated, then

cov (24, Zm) = O° (Jk =l =nK:n=1,.... N=-1lim=1,..., M,)

=0 {Otherwise) (315)

where z;,, is the mth element of vector z; and k = 1,..., NK. Thus, from equation (311), the
NRK x NK covariance matrix of design matrix Z is given by

¥z, =c’H™H (316)



Similarly, the NA x ¥VA measurement uncertainty covariance matrix is given by

Ix Ok 0x
) , 10k 1 0
Sp=atly=al |~ N . (317)
Ok Ok Ik
Noting that a3 > 0 and ¢* > 0, define combined output covariance matrix Ly as
Ty =g+ 3, =0 Iz + 0o 'HTH = 3 Ung (318)
where
F{u + DIk oly alg
ol (o + NIk nly
UNK = INK+()‘HTH = (';19)
aly alyk (v + DIk
and
o= U—’;— (320)
o}
It 1s readily shown that
(1 — DIy Iy — 3k
-1k (1-3)Ik -1k
Urk =Ink — S HTH = (321)
-1k — Ik (1 — )k
where
n
3= 322
Na+1 ( )

Then M, x M, generalized
follows:

Qnk =

moment matrix Qng is obtained with the help of equation (310) as

Zrk UnkZnk = ZgH(Ing — SHTH)H  Zg
N{1-NB3ZsZk

(323)

54



Combine equations (320), (322), and (323) to yield

2_
— (324)

Note from equation (324) that the portion of calibration uncertainty due to calibration standard
bias errors is not reduced by replication, whereas that due to measurement errors decreases

roughly as N~'/2,

For the analysis of variance tests presented subsequently in the null hypothesis the input
uncertainty is assumed to be zero. Then o, = 0 and matrix Ung equals Ing: consequently, P
equals Ing in equation (189). For this special case, equations (308), (310), and (323) imply that

Qnk = Z3kZnk = ZgHH"Zy = NZ§Zx = NQg (325)
From equations (226) and (325). VA x NN matrix xg 1s given by
Qi = ZakQrkZak = fTHTszKH (326)
where ' x N matrix 2k 1s
Ok = Zx Q' Zg | (327)

As shown In equations (226) and (228), 3k and yg are synunetric and idempotent with

rank M.

A4.2. General Multi-Input— Single- Output Process.

Consider a general multi-input-single-output nonlinear process calibrated by using experi-
mental design Zg replicated N times as before. The A x | output uncertamty vector of a single
replication, denoted by éyk, 1s given by equation (264). Then for N replications N A x | output
uncertainty vector dyny Is given by

6yNK = HTéfZ—}— €R (328)

where A x | vector 6fy is given by equation (261) with A" x I covariance matrix X, = 0?Ugg,_.
given in equation (262), and where NA x 1 measurement uncertainty vector e€g has NA x VK
covariance matrix ¥ = 0;Ug,, . The measurement uncertainty is assumed uncorrelated
between replications and the A x A measurement covariance matrix of each replication 1s
assumed to be g, = 05 Ug,. Then

[Ug, O0x ... O
0k Ug, ... 0k
Upy = | . : : (329)
i OK OK e UEkJ

and from equation (328),

[ ]
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EYNK =Zp+ EszK = UZFUENK + ”3UszK = U%UYNK (330)
where NN x N A covariance matrix X, is given by
Lz = @ Ugy, = 0:H U H (331)

From equation (330). Uy, can be expanded into

UENK ‘+‘ (}‘UmK (YUEK I OUfZK
”UfZK UE}( + (}UfZK v ”UfZK
Uvik = Upnig + @Ugzny = . , . (332)
aUgg, aUg, . Ug +alUg,

where o is defined in equation (320).

The inverse of VA x NA matrix Uy, can be computed in terms of A x A matrices Ug,
and Ug, as follows. Define A x i matrix B as

B = [Ug, + (N — 1)aUg, ) ' Ug, (333)
and N x A matrix A as

A={Ug, +0Ug[Ix — (N - 1)B]} (334)

If the inverse matrices of equations (333) and (334) exist, then U“(r‘w can be shown to be given
by

A -BA ... -BA

N . -BA A ... -BA ]

Uihx = Dvk —HTBAH = | . (335)
~BA -BA ... A

where N A x N I block-diagonal matrix Dy is constructed from N replications of A" x A matrix
(A + BA) as

A+BA Ok ... O
0k A+BA ... O
Dnk = * : - (336)
Ok Ok ... A+BA

For the linear case M, x M, moment matrix Qug can now be computed in terms of A x K
nmatrices as follows:
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Qnk = Zak Uy, Znk = (ZRH)UY (ZgH)T (337)

YNk

It can readily be seen from equations (314), (335), and (336) that

H" = H(Dnk — HTBAH)H" = N[Ix - (N — 1)B]JA (338)

K

-
HU,
Hence for the linear case,

Qnk = NZg[Ix — (N — )B]AZg (339)

For the noulinear case, a single replication of experimental design Zg, evaluation of equa-
tion (271) yields A x M, matrix F. . Then over N replications of Zg. with design matrix
Zng given by equation (308), equation (271) vields NK x M, matrx F = H'F., . If equa-
tion (279) holds, it follows from equation (338&) that

~ T -1 _ T 1 T
R~ FFNKUYNK F“NK - F"KHUYNKH Fr.\-
= NF[ [Ix — (N - )BJAF, (340)

Cquation (340) permits comiputation of confidence and prediction intervals for replicated cali-
bration data in terims of A" x A" matrices; therehy, required coniputer storage and computational

resources are reduced when N is large.

With reference to equations (188) and (189), the analysis of variance null hy pothesis assumes
that if matrix Uy = Ink: then matrix P = Ing. If equation (280) holds, then for the null
hypothesis M. x M. matrix R becomes

o~ T _ T T
R~F" F. =F'HH'F,

= NF_ F,, (341)
I follows that N A x NA matrix §2p ., given in equation (286), is given by

1

Dy = Fo  RT'FL = THTFCK(FTKFnK)—'FIKH
1
= JTHTQFKH (342)

where N x A matrix §)pg is obtained from equation (286) as

Qpx =F (FI F.,)'F[ (343)

As shown in equation (291), matrices g and $lp, are symmetric and idempotent with
rank M.



A4.3. Analysis of Variance of Replicated Calibrations.

Analysis of variance of replicated calibrations provides tests of significance for the presence
of bias uncertainty due to input loading errors or mathematical modeling errors, as well as for
nonstationarity of estimated parameters. The analysis of variance is developed in this section
with single-input-single-output process notation. Note that similar results are obtained for the
general nmulti-input-single output case by replacing Qnk, Ox. Wnk. Wk, and M, by $g.
Qr, Wry, WFg, and M, respectively.

Let the null hypothesis (ref. 7) assume that input loading uncertainties and modeling errors
are zero and that NK x 1 measurement uncertainty vector eg has NA' x NN covariance matrix
Te = 02Ink. Then NA x NK matrices U and P are both equal to Ik and do not appear
in the following equations. Transformed output vector v is equal to and replaced by observed
output vector y.

The A x K matrix Wy is defined in equation (225) as

WK = IK - QK (344)

Matrix Wg, is defined similarly in equation (290). After N replications A x A matrix Wy
expands to VA x VK matrix Wk given as

Wk =Ink — Onk (345)

where matrices £nk and Qr,, are in equations (326) and (342) and has rank A,. Since $dnk
is idempotent, then by Lemma 7 matrix Wyg is idempotent with rank NK — M.

For use in the development, define NN x NN matrix Gy as

1 IK IK IK
Gp=—H™H==| ! { ... (346)
. Iv Ix ... Ik

It is readily seen that Gy is idempotent with rank A. By Lemma 7. matrix Ink — Gy 18
idempotent with rank NN — K.

Next Gy is shown to be a two-sided identity of any matrix of the form 1/NHTAH, in
particular £y . Indeed, from equations (326) and (342),

1 1
Guflnk = vHTHHTQKH = N—HTQKH = Qnk

1
= FHTszKHHTH = QnkGh (347)
From equations (345) and (347),

GuWnk = Wk GH (348)

58



Therefore, NN x NK matrix product WGy Wy, to be used later, is idempotent. Also, it is
seen that

WkGuWnk = (Ink — ”NK)GH(INK — Ok ) = (G — Onk ) (Ink — Onk)
— GH — SlNK (319)

Since Gy has rank A and £ nk has rank M, . it follows from Lemimas 5 and 6 and equation (319)
that product Wnk GHEWnk has rank A — M,. Note that A — M, > 0.

Estimated Af, x 1 parameter vector ¢. NA x 1 predicted output vector y, and NK x 1
residual vector € are obtained with equations (218), (223), and (224), respectively, for a linear
process, and equations (270), (285), and (289), respectively. for a nonlinear process. Recall from

equation {(224) that € can be expressed as

with zero expected value and VA x N covariance matrix ¢°Wyg.

Let e, denote the A x | residual vector at the nth replication. which has zero expected
value and covariance matrix c*Wy. Then residual vector e can be partitioned into N, K x |
subvectors as shown below:

e = el o ... ef (351)

Let @k denote the mean value of the set of residual vectors ¢, averaged over N replications; that

18,

|« I 1
=V - en = T\“'—He = THWNKeE (352)

€K

The residual sum of squares, denoted by Sy, is defined in equation (231) as

Ser=eTe = es Wyker (353)

By Theorem 1, S¢p is chi-square distributed with N A — M, degrees of freedom; the standard

) Sar )'/‘-’
Sp= [ 354
F (M\' — M, (354)

error of the regression given by

1s an unbiased estimate of ¢.
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Residual sum of squares S can be partitioned into the following sum of quadratic forms:

Sg;_‘ = E;Tg’ = éTWNKGHWNKQ + ﬁT (INK - WNK GHWNK) 6 (0;:5)

By using equations (348) and (350) and the fact that Wy is idempotent. Sgp can be expressed
as

Sor = egWNkGHWnker + € Wk (Ink — Gu) Wnker (356)

Denote the first right-hand term in equation (355) by S as follows:

Sev = 6 TWNkGauWrke = €EWNK GuWnkeg (357)

which follows from equation (350) and the fact that Wy is idempotent. Then Sgv can be

expressed as

.q‘\'\' = E;!;WNK GHWNKEE = 1\"é§é]( (358)

which follows from equations (350). (352), and (357). It has been shown that WG Wk
is idempotent with A — A, degrees of freedom. Therefore, it follows from equation (358) and
Theoremn 1 that Sgy/o3 is chi-square distributed with A — A, degrees of freedom. Define the
root-niean-square value of Sey as

]

Sev \* i
- 359
(A’-M,) (359)

Variable Sy is interpreted as the standard error due to bias uncertainty.

Sy

Il

Consider next the second right-hand term of S, in equation (355). Define Sy, as

N Ay
S =33 (@, —af =) (60— &) (@ - 8k) (360)

=1 n=l n=|

where 7, is the kth clement of K’ x 1 residual vector ey, and & is the kth element of A x 1
vector 8. Variable Sy is seen to equal the sum of squares about the means of the set of N
residual vectors &, each of dimension K x 1. It follows from the definition of H that

v
Ssu =Y _(ew—&x)"(€n — 8k) = (e — H'ex)"(e - H'ex) (361)
n=I
Define NA x | vector ey as follows and use equations (350) and (352) to obtain the result
- A T- PO I -
eM:(é——H eg = e — —,'\‘TH He = (INK‘ GH)E
= (Ink — Gu)Wnke€r (362)
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By using equations {(360) to (362),

Ssar = eg,[em = GEWNK (Ink — Gu)Wnker (363)

Comparison of equations (356) and (363) shows that Sy equals the second right-hand term of
Sqp. Moreover, it is clear that matrix product

WNK(INK - GH)WNK = WNK - WNKGHWNK

is idempotent. and, by Lemumas 5 and 6, has rank NN — A, since Wy has rank NN — A, and
Wak GEW ik hasrank A — AM,. By Theorem 1, Sqy/o% is chi-square distributed with NN — K
degrees of freedom. Variable S.y; can be interpreted as the portion of residual sum of squares
S¢p due to measurement uncertainty. The root-mean-square value

q i/2

N RNV

Sy=| ——— 364
" (A’I\'— I\'> (36

is interpreted as an estimate of the standard deviation op of the measurement uncertainty.

It follows from Theorem 2 that S« and Sy are independent.  Therefore, the ratio
Ty, = [Ssx/(K = M)/ISou/(NKN — K)] is F-distributed with A — M,, NN — K degrees of
freedom. The test of significance for the existence of distinct input loading biases is as follows.
Assume as the null hypothesis that input loading bias error and modeling error are zero. Form
the expression

Sox/(K — M,)

Ty, = =
YW Sn /(NN = R)

> Iy, vi-n () (365)

If inequality (365) is satisfied. then the null hypothesis that both input loading bias error and
modeling error equal zero is rejected at confidence level a.

A4.4. Stationarity Test of Estimated Parameters.

A test is developed for nonstationarity of estimated individual parameter ¢, € ¢ over N
replicated calibrations. Let ¢g, denote the parameter vector estimated at the nth replication by
a N-point regression, with residual sum-of-squares Sgg,, for n = 1,..., N. Define

N
Ssi=)_ Ssr, (366)

n=l

Let ¢ denote the parameter vector estimated by an N A-point global regression over the complete
set of N replicated calibrations. To test for stationarity of parameter c,, replace the mth
element of ¢g, by ¢, € ¢ and compute resulting the error sum-of-squares, denoted by Sy, , for
n =1,...,N. Compute Sy, = > Sy, forn =1, .., N. The ratio (Ss, — Ser)/Ssr
Is subsequently shown to be F-distributed and thereby provides a test of significance for
nonstationarity of the estimated value of ¢, over the N replicated calibrations.
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The null hypothesis assumes that calibration standard errors and modeling errors are zero
and that estimated parameter vector €g, is stationary over the N replications. Let NA x|
measurement error vector €g be partitioned among the A replications as [ep, ...e}:\]T. where €g,
denotes the A x | measurement error vector at the nth replication. Also, let é¢g, denote the

uncertainty of the nth estimated parameter vector, which is obtained from equation (281) as

bcp, = —R7'Fleg, (367)

The uncertainty of element ¢, € ¢g, Is seen to be

&cg,,, = —pnFleg, (368)
where pT ix the mth row of R™'. Sumilarly, the uncertainty of globally estimated parameter
vector Cq s given by

- L g g

beq = —,\—,R, F, Heg (369)
N

and the uncertainty of element ¢, € ¢¢ is

- 1
8¢, = —N—,I)IFEHGE (370)
The residual vector of the nth replication, denoted by eg, . is found by using equation (288) as

(A‘.R“ = F[.(SER” + €y, (371)

Replace @y . by ¢g, in equation (371) to obtain the error vector of the nth replication
computed with the globally estimated value of parameter c,,, which is denoted by e, . From
equations (368) to (371), the difference between error vectors €, , and ep, is given by

A 1
ity = Lo, PR ET (fnl - VHEE) (372)

where f,  is the mth column of F..

T
Let NN x 1 error vector €gr, = |€x .eX. | . which can then be expressed in terms
" R GR,, N

m.l

of NN x 1 measurement error vector €g as

- |
€GR,, — (IA — -\—THTAH) €E (373)

where A x A matrix A =f. pFF! and NK x NK block diagonal matrix I is defined as

m
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A O 0

0o A ... 0 _
Ia=1|. . : (374)

o 0 ... A

Xl

It 1s seen that the inner product el egr. equals (Sy. —Ssp). Clearly A hasrank 1. It follows
1 GR., w €U "
from equation (280) that prFXf. = 1. Hence,

m

AA = fr“,pTF;rf p7T”F3‘ = fmp,T”FcT = A

m Cue

and A is idempotent. It can then be seen that I, is idempotent with rank A, since A s
idempotent with rank I. Thus I, — [/NHTAH is idempotent with rank (N — [). and therefore
the imner product agﬂmécnw can be expressed as

. 1
, - ~ ~ T T -
S, — Ssp = Og;n,,,ffcn,,, = €g (IA — \—H AH> €R (375)

4

It follows from Theorem | that S, — Ssr s chi-square distributed with & — 1 degrees of
freedom.

The residual sum of squares of the nth replicated regression, Scp, = € Wieg,. has been
shown as chi-square distributed with &' — A, degrees of freedom. Because the error vectors e,
are mutually independent, it follows from equation (366) and Theorem 2 that the total replicated
sum of squares Sy is chi-square distributed with N(K — 1,) degrees of freedom. Therefore, if

the following inequality is satisfied

(Ssi, —Ss)/(N—=1)
S/[N(h — M,)]

Ton = > Fiovony viv—w,)(a) (376)

then the null hypothesis that parameter ¢,, Is stationary is rejected at confidence level a.
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